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Label Shift Quantification

Consider a covariate space X C R?, a label space We make the following identifiability hypothesis on the mapping ®:
Y := |c]. Consider the Label Shift Hypothesis,

where the test distribution QQ verified: i NO(P,) =0 < \=0 (A1)
1=1

Consistency of Distribution Feature Matching

Q = Za;ﬁpi (LS) 1C' > 0: ||®(x)||x < C for all x. (Az2)
i=1

Theorem 1 If the Label Shift hypothesis (LS) holds, and if the mapping ® verifies Assumptions (A1)
With AP% — P(?ﬂY — }) We have access to sam- and (As), then for any 6 € (0,1), with probability greater than 1 — 9, the solution & of (P) satisfies:
ples: Py, --- ,P. and Q.

We also consider a new setting, Contaminated La- la — oy < 2C R /s (Hsz 1 ) 1)
bel Shift defined as : ~ VA

7 (Ve ). ¢

VAN

Q= Z o; P; + apQo. (CLS)
i=1

%

where R, = 2 + /2log(2x), w; = %@

The distribution Qg is seen as a contamination,
for which we have no prior knowledge nor sample.

P

e The bound (1) improves upon existing bounds in the literature (|2, 3|).

(oal : Estimate the proportions o*. This is called e The (empirical) quantity A, provides a natural criterion for the choice of the feature map
Quantification [1]. hyperparameter.

Distribution Feature Matching Robustness to contamination

Let ® : X — F be a fixed feature map from X In the Contaminated Label Shift setting, we aim at finding the proportions of the non-noise classes of
into a Hilbert space F. We extend the mapping the target. As these proportions don’t sum to one, the "hard" condition » . o; = 1 is replaced by the

to probability distributions on X : "soft" condition ) . a; < 1.
db: P (I)(IP)) = ﬂXNIP’[(I)(X)] c F. c ) ) -
(sot = argmin | a;®(P;) — ®(Q)|| (P2)
We call Distribution Feature Matching (DFM) acint(A°) ||, =7 -
any estimation procedure that can be formulated A | |
as the minimiser of the following problem: If ag =0, then ||&sor, — a™[|2 is bounded by (1) and (2) with Ay, replaced by Amin.
; 2 Theorem 2 Introduce V := Span{®(P;),: € [c]} and let Iy be the orthogonal projection on V.
Z@iq)(]fpi) _ CID(Q) (P) If the Contaminated Label Shift hypothesis (CLS) holds, and if the mapping ® verifies Assumptions
P - (A1) and (As). Then, with probability greater than 1 — §:
c . c . ¢ R | _ A * 1
A= (o € RY: )y = 1) s the (e —1) Jésore — |2 < (3€n + 2m + v/200 € [[9(Qo) + [T (@(Qo)) 1 7). (3)
dimensional simplex. min
with: .
Related literature e, = O/ . _ o ts

Kernel Mean Matching (KMDM) |2]:

e Bound (3) shows the robustness of DFM against perturbations Qg that are orthogonal to V.
B(z) = (y - k(x, 1)) € Ha

e For BBSE, the feature space is of the same dimension as the number of sources hence the orthog-

—

Black-Box Shift Estimation (BBS. : onal component will always be 0 and we expect no robustness property for BBSE.

e For KMM with a Gaussian kernel: ®(P) and ®(P’) will be close to orthogonal if P and P’ are

well-separated. We expect robustness property for KMM if the main mass of Qg is far away from
the source distributions.

Experiments

The source is a list of ¢ Gaussian distributions. aj ranges from from 0 to 0.3. We will test three kinds
of noise Qp: uniform distribution over the data range, a new Gaussian with a mean distant from the
other means and a new Gaussian with a similar mean to the source.
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