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Titre: Cadre unifié pour la quantification label shift.
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Résumé: Il n’est pas rare qu’en classification su-
pervisée, l’information recherchée ne soit pas de
nature locale, c’est-à-dire associer à chaque point
un label, mais de nature globale : obtenir les pro-
portions des différents labels dans l’échantillon. Ce
problème, que nous avons choisi de désigner sous le
nom de “label shift quantification”, mais qui porte
aussi de nombreux autres noms dans la littérature,
a vu depuis le milieu des années 2000 une multipli-
cation des articles publiés. Cependant, ces travaux
sont souvent menés en parallèle, issus de commu-
nautés dialoguant peu, ce qui a résulté en une bib-
liographie parsemée.

Dans ce manuscrit, nous proposons d’abord
une revue de ces différents travaux avec un dou-
ble objectif : d’une part, créer un pont entre
ces communautés en présentant des résultats issus
des différents domaines de recherche, et d’autre

part, resituer la suite des travaux menés dans
leur contexte, notamment en s’intéressant aux ef-
forts d’unification des méthodes. Dans un second
temps, nous proposons un cadre unifiant plusieurs
méthodes classiques de la littérature basées sur
des vectorisations par moyenne. Nous étudions les
garanties théoriques de ces méthodes et montrons
des résultats de robustesse lorsque l’hypothèse cen-
trale de label shift n’est plus vérifiée. Nous pro-
posons aussi une extension de ce travail, cen-
trée sur des vectorisations par noyaux, utilisant
l’information de la covariance et non plus seule-
ment la moyenne. Enfin, dans un troisième temps,
nous nous intéressons à l’utilisation d’une vectori-
sation particulière basée sur les Random Fourier
Features dans des applications en cytométrie en
flux.

Title: A unified framework for label shift quantification.
Keywords: Learning Theory, Quantification, Kernel Mean Embedding, Label Shift, Open set label
shift, Flow cytometry.

Abstract:. In supervised classification, it is not
uncommon that the information sought is not lo-
cal, meaning the label associated to each data
point, but global: obtaining the proportions of the
different labels within the sample directly. This
problem, which we have chosen to refer to as “la-
bel shift quantification” but which is also known
by many other names in the literature, has seen a
proliferation of publications since the mid-2000s.
However, these works often proceed in parallel,
coming from communities with limited dialogue,
resulting in a scattered bibliography.

In this manuscript, we first provide an overview
of these diverse works with a twofold aim: first, to
bridge the gap between these communities by pre-

senting results from different research areas, and
on the other hand, contextualise the subsequent
work, particularly focusing on efforts to unify meth-
ods. Second, we propose a framework that unifies
several classical methods from the literature based
on mean vectorisations. We examine the theoreti-
cal guarantees of these methods and demonstrate
their robustness when the central assumption of
label shift is violated. We also extend this work by
focusing on kernel-based vectorisations using co-
variance information rather than just the mean.
Finally, we explore the use of a specific vectorisa-
tion based on Random Fourier Features in appli-
cations related to flow cytometry.
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Chapter 1

Introduction

1.1 Introduction en Français
Ce travail est le fruit de la collaboration entre trois entités. D’une part, sur le plan académique,
de l’université Paris-Saclay et plus particulièrement de l’équipe Probabilités et statistiques du
Laboratoire de Mathématiques d’Orsay ainsi que de l’équipe DataShape du centre INRIA de
Saclay et d’autre part, sur le plan industriel, de l’entreprise Metafora. Il se place dans le cadre
du développement du logiciel METAflow, logiciel d’aide à l’analyse de données de Cytométrie.

Dans ce cadre, notre travail porte sur un problème d’estimation de proportions supervisé,
portant de nombreux noms dans la littérature mais que nous désignerons par Label Shift
Quantification ou plus simplement Quantification.

Dans ce problème nous supposons avoir accès à plusieurs échantillons de référence, cha-
cun ayant été tiré selon une distribution différente. Un nouvel échantillon est alors tiré que
l’on suppose être issu d’un mélange de ces distributions de références. L’objectif est alors
d’estimer les proportions de ce mélange.

Pour analyser les données de cytométrie, METAflow utilise un algorithme de clustering
hiérarchique. L’algorithme retourne un arbre, où chaque nœud représente un sous-ensemble de
points, i.e. un cluster. L’objectif de cette thèse est de faire de la quantification sur l’ensemble
des nœuds de l’arbre. Dû à ces contraintes applicatives, nous avons opté pour une approche par
vectorisation de distribution, en particulier en utilisant les Random Fourier Features (RFF). La
deuxième étape de notre travail a été d’étudier comment ces vectorisations par RFF pouvaient
aider dans le travail d’analyse des données de cytométrie au-delà du cadre de la quantification.
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1.1.1 Label Shift Quantification . . . . . . . . . . . . . . . . . . . . . . 8
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1.1.1 Label Shift Quantification
Quantification est un terme ambigu qui peut être utilisé pour désigner une grande variété de
problèmes en mathématiques et en sciences en général. Tout au long de ce manuscrit, nous
appellerons quantification le problème consistant à quantifier le changement de propor-
tion entre une distribution de référence appelée source et une nouvelle distribution
appelée cible.

La source et la cible s’écrivent comme un mélange de c distributions (Pi)
c
i=1, correspon-

dant à différentes classes, mais les poids des mélanges changent entre la source et la cible.
On trouve des variantes de ce problème sous de nombreux noms dans la littérature : class
prior estimation, class prior change, prevalence estimation, class ratio estimation, learning to
quantify, unfolding, domain adaptation under label shift, label shift adaptation, et probable-
ment d’autres noms que nous ne connaissons pas encore. En résulte une bibliographie très
segmentée, qui peut être divisée en trois catégories en fonction de l’objectif :

• Le premier est détecter si le mélange de la source et de la cible est différent. On se
situe alors dans la littérature des tests statistiques.

• Le second consiste à corriger une méthode développée sur la source et dont l’efficacité
a été prouvée sur la cible. Par exemple, si on entraîne un classificateur sur la distribution
source pour classer les différentes classes (Pi)

c
i=1, fonctionnera-t-il sur la cible ? Et si

ce n’est pas le cas, comment le corriger ? On se situe alors dans la littérature machine
learning et plus précisément au problème d’adaptation de domaine.

• Le dernier problème est de quantifier le changement de poids, ou en d’autres termes,
pouvons-nous estimer le nouveau poids du mélange dans la cible ?

8
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Dans ce manuscrit, nous nous concentrons sur ce dernier point. La littérature la plus
concernée par cette question l’appelle Quantification. Ce n’est probablement pas le terme
le plus approprié, car il est souvent ambigu et laisse l’observateur avec une question : Qu’est-
ce qui est quantifié en quantification ? C’est pourquoi nous préférons le terme label shift
quantification. Nous donnerons une définition formelle de label shift dans le Chapitre 2
(Définition 2.1), mais pour résumer simplement, le label shift est exactement ce que nous
cherchons à estimer : le changement de poids du mélange. La quantification n’est pas un
sujet nouveau en soi, on peut par exemple retrouver des travaux en épidémiologie datant de
1966 [11] cherchant à estimer la "prevalence", c’est-à-dire les proportions, des classes dans un
échantillon. De plus, de nombreux travaux de classification sont en réalité des problèmes de
quantification dans lesquels l’information cherchée n’est pas une information locale sur l’ap-
partenance de chaque point à une classe, mais une information globale sur les proportions des
différentes classes dans l’échantillon. La classification n’est alors qu’un moyen de quantifier.
Cependant, il a fallu attendre le début des années 2000, dans une série d’articles par Forman
en 2005 [46], 2006 [47] et 2008 [48], pour que le sujet s’impose comme une problématique
en soi et non comme une simple application de classification. Depuis, la problématique s’est
structurée sous cette dénomination commune de “quantification” et de nombreux articles
ont été écrits sur le sujet jusqu’au récent livre Learning to quantify d’Esuli et al. [32] publié
en 2023, des data challanges ont été organisés [35, 36] et des workshops [15, 27, 71] sur
le sujet ont eu lieu lors de grandes conférences internationales de Machine Learning (CIKM
2021 et ECML/PKDD 2022/2023). Cependant, le sujet n’est pas non plus devenu "grand
public" au sein des communautés machine learning. On retrouve ainsi encore de nombreux
articles traitant de quantification sans le nommer explicitement [49, 77].

Open Set Label Shift Quantification

Nous étudierons également un cadre plus général que le label shift, dans lequel les proportions
des différentes classes dans la cible changent, alors que la distribution des classes ne change
pas, et qu’une nouvelle classe, appelée la contamination, apparaît. Cette hypothèse a été à
notre connaissance formulée pour la première fois dans l’article correspondant au Chapitre 3
sous le nom de contaminated label shift et en parallèle de manière indépendante par Garg
et al. [51] sous le nom Open Set Label Shift (OSLS). Ce nom “open set” est en référence à
l’Open Set Domain Adaptation (OSDA) aussi parfois appelé “universal domain adaptation”
une hypothèse très générale faite en adaptation de domaine, dans laquelle les distributions des
classes changent, les proportions des classes changent et une contamination apparaît dans la
distribution cible. Les travaux de Garg et ses coauteurs cherchent à obtenir un classificateur
ayant une bonne précision sur la donnée cible et non à déterminer les proportions (bien que
leurs méthodes permettent d’obtenir ces proportions). Dans la littérature quantification, ce
setting n’avait pas encore était traité avant les travaux que nous présentons dans le Chapitre 3.
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1.1.2 Application à la Cytométrie en flux
La cytométrie en flux est une technologie qui permet une analyse rapide de cellules indivi-
duelles suspendues dans une solution saline. La machine permettant de réaliser ces mesures,
le cytomètre, se compose d’éléments fluidiques, optiques et électroniques. Le système flui-
dique est composé de la solution saline dans laquelle les cellules, issues par exemple d’un
prélèvement sanguin ou de moelle osseuse, sont suspendues. La machine pressurise le fluide
et le fait converger vers un point afin que les cellules puissent être analysées une à une.
Le système optique consiste en un laser pointant en direction du point de convergence des
cellules qui excitera les cellules, provoquant des signaux lumineux redirigés par une série de
filtres dichroïques et captés par des tubes photomultiplicateurs réglés à différentes longueurs
d’onde allant des ultraviolet (355 nm) jusqu’au rouge (640 nm). Cette fluorescence émise est
la résultants de deux phénomènes, d’une part la "couleur" naturelle de la cellule ou autofluo-
rescence et d’autre part la fluorescence émise par un anticorps couplé à un fluorochrome ayant
été placé par les cytométristes dans la solution saline lors de la préparation de l’échantillon. À
cela, s’ajoutent deux mesures : la lumière diffusée aux petits angles (Forward Scatter, FSC)
et la lumière diffusée à 90 degrés (Side Scatter – SSC) renseignant sur la taille, la forme ou
encore la granularité des cellules. Enfin, le système électronique enregistre ces mesures et les
sauvegarde sous la forme d’un fichier standardisé (.fcs pour Flow Cytometry Standard). Le
fonctionnement d’un cytomètre est résumé en Figure 1.1.

Figure 1.1 : Schéma d’un cytomètre en flux, illustrant les systèmes fluidiques,
optiques et électroniques. Source de l’image : AAT Bioquest, Inc [8].

Du point de vue pratique, la donnée enregistrée prend la forme d’un tableau, où chaque
ligne correspond à une cellule et chaque colonne correspond à un marqueur (plus précisément,
à une longueur d’onde associée à un marqueur de fluorescence). La valeur d’une case repré-
sente alors l’intensité lumineuse émise par une cellule à une longueur d’onde donnée.
L’objectif des cytométristes est alors double, d’une part en amont choisir les bons marqueurs
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afin de caractériser au mieux les cellules, le nombre de tubes photomultiplicateurs étant limité
bien que de plus en plus conséquent. Par exemple, les cytomètres présents à Metafora pos-
sèdent entre 10 et 20 capteurs. D’autre part, en aval, les cytométristes sont responsables de
l’analyse des données et plus particulièrement de l’identification de clusters (dans la termino-
logie Machine Learning) ou gates (dans la terminologie cytométrie). L’analyse conventionnelle
des données de cytométrie se fait manuellement comme présenté en Figure 1.2.

Figure 1.2 : Stratégie de gating issue de l’article de McKinnon et al. [81]. Les
gates sont une à une dessinées en regardant la donnée au travers de 2 marqueurs
bien choisis, filtrant ainsi la donnée jusqu’à ne laisser que la donnée d’intérêt. Dans
cet exemple, les singlets (i.e. cellules étant passé seules devant le laser) sont d’abord
sélectionnés puis les cellules vivantes, puis les lymphocytes, puis les lymphocytes
exprimant le complexe protéique CD3, les lymphocytes exprimant le complexe
CD8 et enfin la population d’intérêt.
Cet exemple montre bien deux limites de ce type d’analyse : l’analyse est lente (6
étapes pour arriver à la bonne population) et les gates sont dessinées manuellement
par le ou la cytométristes, incorporant une part d’arbitraire dans l’analyse.

Pour pallier les défauts inhérents à l’analyse manuelle, un nombre croissant d’algorithmes,
de papier ou de logiciels ont été proposés pour automatiser l’analyse des données de cytomé-
trie, voir par exemple Cheung et al. [23]. Metafora propose METAflow, un logiciel utilisant
principalement un algorithme de clustering hiérarchique, basé sur une estimation de densité
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et la persistance homologique [20], permettant un gating automatique tout en laissant à
l’utilisateur le contrôle en choisissant les branches de l’arbre de clustering à explorer.

Dans le Chapitre 5, on cherchera à estimer la proportion de certaines cellules d’intérêt,
c’est-à-dire à faire de la quantification, dans chacun des nœuds de l’arbre. Cela induit deux
contraintes sur l’algorithme que l’on recherche. D’une part, puisque les cellules d’intérêt ne
représentent pas l’ensemble des cellules d’un jeu de données (parfois, cela ne représente même
qu’un ensemble très faible), on se place dans le cadre de l’open set label shift. D’autre part,
du fait de la structure d’arbre, on doit pouvoir résoudre le problème sur chacun des nœud
sans que la complexité algorithmique ne soit trop élevée. En deuxième objectif, on regardera
si les vectorisations par Random Fourier Features peuvent être utilisées pour identifier le label
sur les nœuds de l’arbre directement.

1.1.3 Vectorisation de distribution

L’approche que nous allons poursuivre pendant toute cette thèse est l’utilisation de vectori-
sation moyenne (Mean Embedding).

Mathématiquement, supposons que nous avons une certaine distribution P sur l’espace des
données X et soit ϕ une fonction de X → RD. La vectorisation moyenne de P par la fonction
ϕ, que l’on notera Φ(P), est alors la moyenne de ϕ sous P, i.e. Φ(P) = EP[ϕ(X)]. La propriété
intéressante de cette fonction est qu’elle est linaire en la distribution. Autrement dit, si la
distribution cible Q s’écrit comme un mélange de distributions de référence Pi : Q =

∑
αiPi

alors Φ(Q) =
∑

αiΦ(Pi).
Une façon de résoudre le problème de quantification est alors d’utiliser les données d’en-

traînement pour estimer les Φ(Pi) et d’utiliser la données de test pour estimer Φ(Q), pour
ensuite chercher les proportions α̂ tel que

∑
α̂iΦ(P) est le plus proche possible de Φ(Q).

La distance la plus naturelle à utiliser est la distance L2 et les travaux théoriques que nous
présentons sont obtenus avec elle, mais en pratique d’autres distances pourraient être utilisées.

Remarque. J’ai utilisé ici le terme de vectorisation, car j’ai défini ma fonction ϕ à valeur
dans RD. En pratique, c’est cela que l’on fera tout au long de la thèse. Cependant,
l’ensemble des résultats peuvent aussi s’appliquer si ϕ est à valeur dans un espace de
Hilbert quelconque H, par simplicité, j’utiliserai tout au long de cette introduction le
terme vectorisation et ne ferai pas la différence entre RD et H tandis que dans le corps
de la thèse, j’utiliserai le terme embedding et ne parlerai que de H pour que les résultats
soient les plus généraux possibles.

La structure d’arbre rend ces méthodes basées sur des vectorisations par moyenne parti-
culièrement intéressantes. En effet, puisque la fonction Φ est linéaire pour des distributions,
cela entraîne que la vectorisation d’un nœud est égale à une moyenne pondérée des vecto-
risations de ses enfants. Ainsi, il suffit de calculer la vectorisation des feuilles puis de faire
remonter l’information vers la cime de l’arbre. Les proportions de chaque nœud se calculent
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par la résolution d’un problème QP en basse dimension dont le temps de calcul est négligeable
par rapport aux calculs des vectorisations.

N’importe quelle fonction ϕ peut être utilisée, par exemple, on parlera de méthodes utili-
sant la sortie d’un classificateur. ϕ n’est alors techniquement pas à valeur dans RD, mais soit
dans le simplex de dimension (c− 1) : ∆c := {x ∈ Rc : xi ≥ 0,

∑
xi = 1} si le classificateur

renvoie une probabilité, soit dans {0, 1}c si le classificateur ne renvoie que la classe prédite.
Autre exemple, on peut vectoriser en utilisant une couche intermédiaire d’un réseau de neu-
rones. Les réseaux sont des algorithmes qui apprennent à bien séparer des données (souvent
de très hautes dimensions comme des images) dans une représentation intermédiaire, puis à
classifier (par un classificateur linaire) dans un second temps.

Une autre forme de vectorisation dont on reparlera tout au long de ce manuscrit, est le
Kernel Mean Embedding. Rappelons d’abord la définition d’un noyau.

Définition. (Noyau semi-défini). Une fonction k : X ×X → R est un noyau semi-défini
positif si elle est symétrique, c’est-à-dire k(x, y) = k(y, x), et si la matrice de Gram est
positive :

n∑
i,j=1

cicjk(xi, xj) ≥ 0, (1.1)

pour tout n ∈ N, tout choix de x1, . . . , xn ∈ X et tout c1, . . . , cn ∈ R. On dit qu’il est
défini positif si l’égalité dans (1.1) implique c1 = c2 = . . . = cn = 0.

On peut montrer que pour tout noyau semi-défini positif k (que l’on appellera simplement
noyau dans la suite) il existe un unique espace de fonctions Hk de X → R, appelé le RKHS
(espace de Hilbert à noyau reproduisant) associé à k et une unique fonction Φk dans cet espace
telle que k(x, y) = ⟨Φk(x),Φk(y)⟩, pour tout x, y. Le Kernel Mean Embedding (KME) d’une
distribution associé au noyau k est alors défini comme :

Φk(P) :=
∫
X
Φk(x)dP(x) = EP[Φk(X)] ∈ Hk. (1.2)

Cet objet est plus complexe que les vectorisations que l’on a présentées précédemment
car cette fois, il est à valeur dans un espace de Hilbert de dimension infinie, et l’intégrale
(1.2) est définie (si elle existe) comme une intégrale de Bochner.

La distance L2 entre la vectorisation de deux distribution est alors appelé le Maximum
Mean Discrepancy, introduite par Gretton et al. [61] pour des tests statistiques.

Cependant, le MMD, comme toutes les méthodes à noyaux, souffre d’un problème compu-
tationnel. On ne peut accéder au MMD entre deux distributions que par le biais des produits
scalaires en utilisant l’astuce du noyau (kernel trick) :

⟨Φk(P),Φk(Q)⟩ = EP,Q[k(X,Y )].

Calculer ce produit scalaire est de complexité quadratique avec le nombre de points. En
effet, Φk(P) même quand P est une distribution empirique, ne peut être calculée et stockée
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facilement sur un ordinateur, car il s’agit d’une fonction. Ces deux éléments sont chacun
rédhibitoires pour l’application à la cytométrie en flux.

1.1.4 Random Fourier Features

Pour surpasser cette problématique, nous utiliserons les Random Fourier Features (RFF),
introduit par Rahimi et al. [98], une méthode d’approximation du noyau.

Les Random Fourier Features sont basés sur le théorème de Bochner :

Theorem 1.1. Une fonction continue φ sur RD définit un noyau semi-définie positif
k(x, y) = φ(x − y) si et seulement si φ est la transformée de Fourier d’une mesure
non-négative.

Un corollaire direct de ce résultat est que tout noyau invariant par translation continu k,
associé à une fonction φ, i.e. k(x, y) = φ(x− y) est la transformée de Fourier d’une mesure
non-négative que nous dénotons Λk et pour laquelle Λk(RD) = φ(0). Par conséquent si on
normalise le noyau par φ(0), Λk est alors une mesure de probabilité appelée la distribution
spectrale de k.

Le noyau peut alors se réécrire comme suit :

k(x, y) = Eω∼Λk
[eiω

T (x−y)] = Eω∼Λk
[cos

(
ωT (x− y)

)
].

Par Monte-Carlo, en utilisant un échantillon (ωi)
D/2
i=1 iid de Λk, la vectorisation z : X → RD

définie par

z(x) =

√
2

D

[
cos(ωT

i x), sin(ωT
i x)

]D/2

i=1
, (1.3)

est telle que : k(x, y) = E
[
z(x)T z(y)

]
, où l’espérance est prise par rapport à (ωi)

D/2
i=1 . Dans

la pratique, une autre vectorisation est couramment utilisée :

z̃(x) =

√
2

D

[
cos(ωT

i x+ bi)
]D
i=1

, (1.4)

où bi sont des échantillons iid de la distribution uniforme sur [0, 2π]. Voir Gundersen [64] pour
le calcul détaillé. Même si cette vectorisation est populaire dans la pratique, nous aimerions
souligner que la deuxième version donne les pires résultats en termes de variance et de limite
supérieure pour le noyau Gaussien [113].
Si la vectorisation est à valeur dans RD, la complexité du calcul des vectorisations est alors
linéaire en le nombre de points et linéaire en le nombre de random features utilisé, c’est
à dire linéaire en D. De plus, le calcul de la vectorisation d’un nuage de points se réduit
à une multiplication matricielle, pour laquelle les GPU sont bien adaptés. Pour gérer les dé-
bordements de mémoire sur les GPU, nous nous appuyons sur la libraire Python PyKeops [19].
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Succinctement, cette méthode permet donc de définir une fonction z : X → RD (avec
D un hyper-paramètre choisi) de telle sorte que pour tout x, y : k(x, y) ≈ z(x)T z(y). Cette
méthode a trois avantages (par rapport à d’autres méthodes d’approximations du noyau
comme pas exemple Nystrom). Premièrement, la vectorisation z(P) est stockable sur un
ordinateur, car il s’agit d’un vecteur de RD. Deuxièmement, le MMD entre deux distributions
ce calcule en temps linéaire et non quadratique. Et enfin, avec cette fonction z, on se situe
toujours dans le cadre des vectorisations présentées plus tôt. L’ensemble des théorèmes de ce
manuscrit s’applique directement avec z sans avoir à modifier les preuves.
Dans les Chapitres 3 et 4 nous verrons cette fonction z comme une approximation du noyau
Gaussien et donc comme une façon d’accélérer le temps de calcul, tandis que dans le Chapitre 5
la fonction z sera vue comme une vectorisation en soi, c’est-à-dire comme un moyen de
caractériser une distribution sous la forme d’un vecteur utilisable dans diverses applications
de cytométrie en flux.

1.1.5 Contributions
La première contribution (Chapitre 2) de cette thèse est une revue de littérature sur la
quantification Label shift. L’objectif de ce chapitre est de présenter et de faire connaître
au lecteur ce domaine de recherche encore méconnu de la littérature Machine Learning.

Ce chapitre présente une vue générale (mais non-exhaustive) des principales méthodes de
la littérature, ainsi qu’une présentation des différentes approches proposées dans la littérature
pour unifier ces méthodes sous un même cadre d’analyse. Par exemple Firat [44] qui représente
différentes méthodes sous la forme d’un problème de régression sous contraintes afin de
présenter des extensions des algorithmes du cas binaire au cas multiclasses. Cette même
représentation est au cœur du package python Qunfold par Bunse [14]. Dans une approche
différente, Garg et al. [52] proposer d’unifier sous une même analyse les deux algorithmes les
plus utilisés en pratique (Adjusted Classify and count et Maximum Likelihood Quantification
que l’on présente dans le chapitre) afin de justifier de la supériorité pratique de l’un des deux.

Ce chapitre se conclut par une présentation des protocoles de test proposé dans la litté-
rature ainsi que d’une présentation et une extension des travaux de Sebastiani [104] portant
sur le choix de la métrique à utiliser.

La deuxième contribution (Chapitre 3) est l’étude théorique et pratique de l’ensemble
des méthodes basées sur les vectorisations par moyenne présentées en Section 1.1.3. Cette
catégorie de méthodes regroupe plusieurs des méthodes présentées dans le Chapitre 2. La
contribution de ce chapitre est double, d’une part dans le cadre Label shift classique on
obtient une borne empirique de l’erreur d’approximation améliorant les bornes ayant été ob-
tenues pour les différentes méthodes tout en étant plus générale car s’appliquant à toutes les
méthodes de la catégorie, voir Théorème 3.1. C’est aussi le premier travail à notre connais-
sance qui propose d’unifier différentes méthodes de la littérature afin d’obtenir un théorème
de convergence s’appliquant à toutes les méthodes. Ce résultat permet aussi d’avoir un critère



16 Introduction en Français

de choix de fonction de vectorisation calculable empiriquement à partir du jeu de données
labellisé d’entraînement, utilisable par exemple pour choisir le meilleur paramètre de band-
width lorsque la vectorisation choisie est basée sur le noyau Gaussien, le choix de bandwidth
étant un problème classique des méthodes à noyaux. Dans le cadre open set label shift, on
obtient là aussi une borne empirique de l’erreur d’approximation, voir le Théorème 3.3 et son
Corollaire 3.2, inédite, car aucune analyse de l’erreur d’un quantifier n’a encore été proposée
dans un cadre open set label shift. Ce résultat met en évidence une robustesse à la contamina-
tion sous une hypothèse d’orthogonalité des vectorisations du bruit avec les vectorisations des
autres classes. Sous cette hypothèse, l’erreur convergera vers zéro, (plus lentement que dans
le cas label shift cependant) tandis que sans cette hypothèse, l’erreur convergera vers un biais
égal à la norme de la composante orthogonale aux vectorisations des autres classes du bruit.
Pour pouvoir faire de la quantification sous open set label shift il faut donc une vectorisation
qui assure une orthogonalité avec le bruit. La méthode utilisant un noyau Gaussien est la plus
adaptée à ce type de problématique car l’orthogonalité des vectorisations est assurée à partir
du moment où les distributions sont bien séparées. On met en évidence la robustesse de la
vectorisation gaussienne à du bruit sur des données simulées et sur des données de cytométrie
en flux issues de Metafora. Une dernière contribution, mineure pour ce chapitre, mais impor-
tante pour le Chapitre 5, est l’utilisation des Random Fourier Features [98] comme méthode
pour vectoriser des distributions.

La troisième contribution (Chapitre 4) propose d’utiliser l’information contenue dans la
variance et non plus simplement la moyenne des vectorisations. Il s’agit d’une extension du
précédent chapitre pour de la quantification label shift, bien que les résultats obtenus sur la
robustesse au cadre open set label shift soient aussi applicables à ces méthodes.
Dans la littérature des tests MMD, c’est un fait désormais bien établi (par exemple dans un
article récent de Hagrass et al. [66] ou dans des articles plus vieux de Harchaoui et al. [31, 67])
que les méthodes n’utilisant que l’information contenue dans la moyenne ne sont pas minimax.
En s’inspirant entre autres de leurs travaux, on propose dans ce chapitre de “régulariser” la
distance utilisée dans le Chapitre 3 par une certaine matrice M . Plus précisément, là où dans
le Chapitre 3 la distance utilisée était la L2, ici on se propose d’utiliser une distance de type
Mahalanobis.

En utilisant un théorème de Bernstein vectoriel, variante d’un résultat obtenue par Wolfer
et al. [127], on obtient une autre borne sur l’erreur d’approximation faisant cette fois-ci
intervenir la variance, voir Théorème 4.2, et on obtient alors un critère de choix de matrice
M qu’on relie au kernel Fisher Discriminant Analysis, un algorithme de réduction de dimension.

Après une discussion sur la forme de cette matrice optimal, ainsi qu’une explication sur
l’estimation pratique de la matrice, on test les nouvelles méthodes sur les même donnée que
celle du chapitre précédent : données simulées et données de cytométrie en flux issues de
Metafora.
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La quatrième contribution (Chapitre 5) est une étude de cas sur l’usage de la vectorisation
par Random Fourier Features pour la cytométrie en flux. On s’intéresse à un jeu de données
réelles contenant l’analyse de moelle osseuse de 29 patients atteints de deux pathologies : le
myélome multiple et la Gammapathies monoclonales de signification indéterminée (MGUS).
Dans un premier temps, on montre l’intérêt de cette vectorisation pour une analyse explo-
ratoire d’un jeu de donnée de Cytométrie. En particulier, on met en évidence l’échec de la
stratégie de gating proposé pour identifier les T cells ainsi que les Plasmocytes de l’un des
patients. Dans un second temps, on s’intéresse à l’usage des RFF pour 2 tâches : identifier
dans l’arbre de clustering hiérarchique issue de METAflow le cluster le plus probable d’être
les cellules d’intérêt et d’autre part la quantification des proportions dans chacun des nœuds
de l’arbres.

Enfin, le manuscrit se termine par l’Annexe A. Celle-ci contient trois résultats de concen-
tration de norme dans des espaces de Hilbert, utilisés au cœur de toutes les preuves de ce
manuscrit. Le premier théorème est un Hoeffding vectoriel : un résultat classique basé sur
l’inégalité de McDiarmid. On complète cette section en présentant un petit historique des
résultats de ce type dans la littérature MMD. Le deuxième résultat de concentration est une
version vectorielle de Bernstein (Théorème A.3) remontant aux travaux de Pinelis [93] dans
des espaces de Banach et Yurinsky [129] dans des espaces de Hilbert. La preuve, que l’on
propose dans ce manuscrit est tirée des travaux de Wolfer et al. [127] avec deux petites dif-
férences. D’une part la correction d’une typo (un log(1/δ) qui aurait du être un log(2/δ)) et
d’autre part, le point de départ de leur théorème est basé sur le résultat de Yurinsky alors que
nous utilisons celui de Pinelis. La différence est cependant minime, puisque qu’elle n’impact
que la constance devant le terme en O (1/n) de la borne : nous avons 2/3 alors qu’ils avaient
4/3. Enfin, pour être complet, nous présentons un troisième théorème, une inégalité de Ben-
nett vectorielle, basé cette fois sur les travaux de Smale et al. [108] qui eux même basent
leurs résultats sur un théorème de Pinelis [93]. La différence porte encore sur la constante
devant le terme en O (1/n) avec cette fois un 4 au lieu d’un 2/3.
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1.2 Introduction in English
This work is the result of a collaboration between three entities. On the academic level, the
University Paris-Saclay and more particularly the Probabilities and Statistics team of the Lab-
oratoire de Mathématiques d’Orsay, the DataShape team of the INRIA centre in Saclay and,
on an industrial level, the company Metafora. It is part of the development of METAflow, a
software to assist in the analysis of flow cytometry data, a type of data that captures multi-
parameter information about individual cells.

In this context, our work concerns a problem of supervised estimation of proportions, which
has many names in the literature but which we will refer to as Label Shift Quantification
or more simply Quantification.

In this problem we assume that we have access to several reference samples, each drawn
according to a different distribution. A new sample is then drawn from a mixture of these
reference distributions and the objective is to estimate the proportions of this mixture.

To analyse flow cytometry data, METAflow performs hierarchical clustering. The output
of the software is a tree where each node represents a subset of points, i.e. a cluster. The aim
of this thesis is to perform Quantification on each node of the tree. Due to these application
constraints, we chose to use a distribution vectorisation approach, specifically using Random
Fourier Features (RFF). The second stage of our work was to investigate how these RFF
vectorisations could help in the analysis of cytometry data beyond quantification.
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1.2.1 Label Shift Quantification

Quantification is an ambiguous term that can be used to refer to a wide variety of problems
in mathematics and science in general. Throughout this manuscript, we will refer to quan-
tification as the problem of quantifying the change in proportion between a reference
distribution called the source and a new distribution called the target.

The source and the target are mixtures of c distributions (Pi)
c
i=1, corresponding to dif-

ferent classes, but the weights of the mixtures change between the source and the target.
Variations of this problem can be found under many names in the literature: class prior esti-
mation, class prior change, prevalence estimation, class ratio estimation, learning to quantify,
unfolding, domain adaptation under label shift, label shift adaptation, and probably other
names that we do not yet know. The result is a highly segmented bibliography, which can be
divided into three categories depending on the objective:

• The first objective is to detect if the weights of the source and the target are different.
It is therefore a statistical testing problem.

• The second is to correct a method developed on the source and whose effectiveness
has been proven, on the target. For example, if you train a classifier on the source
distribution to classify the different classes (Pi)

c
i=1, will it work on the target? And

if it does not, how can it be corrected? This brings us back to the machine learning
literature and, more specifically, to the domain adaptation problem.

• The final problem is to quantify the change in weight, or in other words: Can we
estimate the new weight of the mixture in the target?

19
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In this manuscript, we focus on this last point. The literature most concerned with this
question calls it quantification. This is probably not the most appropriate term, as it is often
ambiguous and leaves the observer with a question: What is quantified in quantification? This
is why we prefer the term label shift quantification. We will give a formal definition of
label shift in Chapter 2 (Definition 2.1), but to summarise simply, the label shift is exactly
what we are trying to estimate: the change in weight of the mixture. Quantification is not a
new subject in itself; for example, we can find work in epidemiology dating back to 1966 [11]
seeking to estimate the ‘prevalence’, i.e. the proportions of the classes in a sample. In addition,
many classification studies are in fact quantification problems because the information sought
is not a local information on whether each point belongs to a class, but a global information
on the proportions of the different classes in the sample. Classification is then simply a means
of quantifying.

It was not until the early 2000s, in a series of articles by Forman in 2005 [46], 2006 [47]
and 2008 [48], that the subject emerged as a problem in its own right and not simply as an
application of classification. Since then, the issue has been structured under the common
name of “quantification” and numerous articles have been written on the subject, culminating
in the recent book Learning to quantify by Esuli et al. [32] published in 2023, data challenges
have been organised [35, 36] and workshops [15, 27, 71] on the subject have taken place at
major international Machine Learning conferences (CIKM 2021 and ECML/PKDD 2022 and
2023). Even so, the subject has not gone mainstream in the machine learning community.
There are still many articles dealing with quantification without explicitly naming it [49, 77].

Open Set Label Shift Quantification

We will also investigate a more general setting than label shift, where the proportions of the
different classes in the target change, while the class distribution does not, and a new class,
called the contamination class, appears. To our knowledge, this hypothesis was formulated
for the first time in the article corresponding to Chapter 3 under the name contaminated label
shift and in parallel and independently by Garg et al. [51] under the name Open Set Label Shift
(OSLS). This name “open set” is in reference to Open Set Domain Adaptation (OSDA) also
sometimes called "universal domain adaptation" a very general assumption made in domain
adaptation, in which class distributions change, class proportions change, and contamination
appears in the target distribution. The work of Garg and his co-authors seeks to obtain a
classifier with good precision on the target data and not to determine the proportions. In the
quantification literature, this setting had not yet been addressed before the work we present
in Chapter 3.

1.2.2 Application to Flow Cytometry

Flow cytometry is a technology that enables rapid analysis of individual cells suspended in a
saline solution. The machine used to perform these measurements, the cytometer, is made up
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Figure 1.3: Diagram of a flow cytometer, illustrating the fluidic, optical and elec-
tronic systems. Image source: AAT Bioquest, Inc [8].

of fluidic, optical and electronic components. The fluid system consists of the saline solution
in which the cells, taken from a blood or bone marrow sample for example, are suspended.
The machine pressurises the fluid and makes it converge towards a point so that the cells can
be analysed one by one. The optical system consists of a laser pointing towards the point of
convergence of the cells, which excites the cells, causing light signals that are redirected by a
series of dichroic filters and picked up by photomultiplier tubes set at different wavelengths
ranging from ultraviolet (355 nm) to red (640 nm). This fluorescence is the result of two
phenomena: the cell’s natural “colour” or autofluorescence and the fluorescences emitted
by antibodies coupled to fluorochromes that have been placed in the saline solution by the
cytometrists during the preparation of the sample. In addition, there are two measurements:
Forward Scatter (FSC) and Side Scatter (SSC), which provide information about the size,
shape and granularity of the cells. Finally, the electronic system records these measurements
and saves them in the form of a standardised file (.fcs for Flow Cytometry Standard). The
operation of a cytometer is summarised in Figure 1.3.

From a practical point of view, the data recorded takes the form of a table, where each
row corresponds to a cell and each column corresponds to a marker (more precisely, to a
wavelength associated with a fluorescence marker). The value of a cell in the table represents
the light intensity emitted by a biological cell at a given wavelength.

Cytometrists have a twofold objective: firstly, to choose the right markers to best charac-
terise the cells, as the number of photomultiplier tubes is limited. For example, the cytometers
at Metafora have between 10 and 20 sensors. Downstream, the cytometrists are responsible
for analysing the data and more specifically for identifying clusters (in machine learning ter-
minology) or gates (in cytometry terminology). Conventional analysis of cytometry data is
done manually as shown in Figure 1.4.
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Figure 1.4: gating strategy from an article by McKinnon et al. [81]. The gates are
drawn one by one by looking at the data through 2 well-chosen markers, filtering
the data until only the data of interest is left. In this example, singlets (i.e. cells
that have passed the laser alone) are selected first, followed by living cells, then
lymphocytes, then lymphocytes expressing the CD3 protein complex, lymphocytes
expressing the CD8 complex and finally the population of interest. This example
illustrates two limitations of this type of analysis: the analysis is slow (6 steps
to arrive at the right population) and the gates are drawn manually by the cy-
tometrist, incorporating an element of arbitrariness into the analysis.
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To overcome the shortcomings inherent in manual analysis, a growing number of al-
gorithms, papers and software have been developed to automate the analysis of cytometry
data, see for example Cheung et al. [23]. Metafora proposes METAflow, a software using
a hierarchical clustering algorithm, based on density estimation and homological persistence,
allowing automatic clustering while leaving the user in control by choosing which branches of
the clustering tree to explore.

In Chapter 5 we will try to estimate the proportion of certain cells of interest, i.e. quan-
tification, in each node of the tree. This imposes two constraints on the algorithm we are
looking for. On the one hand, since the cells of interest do not represent all the cells in a
dataset (sometimes they even represent a very small set), we are at best in the open set label
shift framework. On the other hand, because of the tree structure, we need to be able to
solve the problem on each of the nodes without the algorithm complexity being too high. As
a second objective, we will look in to see if Random Fourier Features vectorisations can be
used to identify the label on the nodes of the tree directly.

1.2.3 Distribution vectorisation

The approach we will be pursuing throughout this thesis is the use of Mean Vectorisation
or Mean Embedding. We have chosen this approach because the vectorisation of a node
in the tree structure can be computed using only the vectorisation of its children. Therefore,
we can compute the vectorisation of all the nodes simply by computing the vectorisation of
all the leaves once. We can solve the quantification problem for all nodes independently once
this step has been performed.

Mathematically, suppose we have a certain distribution P on the data space X and let ϕ
be a function of X → RD. The mean vectorisation of P by the function ϕ, which we will
denote Φ(P), is then the mean of ϕ under P, i.e. Φ(P) = EP[ϕ(X)]. The interesting property
of this function is that it is linear in the distribution. In other words, if the target distribution
Q is written as a mixture of reference distributions Pi : Q =

∑
αiPi then Φ(Q) =

∑
αiΦ(Pi).

One way to solve the quantification problem is then to use the training data to estimate
each Φ(Pi) and to use the test data to estimate Φ(Q) and then to search for the proportions
α̂ such that

∑
α̂iΦ(P) is as close as possible to Φ(Q). The most natural distance to use is

L2 and the theoretical work we will present is obtained with it, but in practice other distances
could be used.

Remark. We used the term vectorisation here, because the function ϕ takes values in
RD. In practice, this is what will do throughout the thesis. However, all the results can
also be applied if ϕ takes values in any Hilbert space H, so for simplicity, we will use
the term vectorisation throughout this introduction and will not distinguish between RD

and H, whereas in the body of the thesis we will use the term embedding and will only
talk about H so that the results are as general as possible.

The tree structure makes these methods based on vectorisations by average particularly
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interesting. Since the Φ function is linear for distributions, this means that the vectorisation
of a node is equal to a weighted average of the vectorisations of its children. So all we have to
do is calculate the vectorisation of the leaves and then work our way up to the top of the tree.
The proportions of each node are calculated by solving a QP problem in small dimension, the
calculation time for which is negligible compared with the vectorisation calculations.

Any ϕ function can be used, for example, we will talk about methods using the output
of a classifier. ϕ is then technically not valued in RD, but either in the simplex of dimension
(c−1) : ∆c := {x ∈ Rc : xi ≥ 0,

∑
xi = 1} if the classifier returns a probability, or in {0, 1}c

if the classifier only returns the predicted class. Another example is vectorisation using an
intermediate layer of a neural network. Neural networks are algorithms that learn to separate
data (often very high-dimensional data such as images) in an intermediate representation,
then classify (using a linear classifier) in a second stage. Another form of vectorisation, which
will be discussed throughout this manuscript, is Kernel Mean Embedding.

First, let us recall the definition of a kernel.

Definition 1.1. (Semidefinite kernel). A function k : X × X → R is a semidefinite
positive kernel if it is symmetric, i.e. k(x, y) = k(y, x), and if the Gram matrix is positive:

n∑
i,j=1

cicjk(xi, xj) ≥ 0, (1.5)

for any n ∈ N, any choice of x1, . . . , xn ∈ X and any c1, . . . , cn ∈ R. It is said to be
definite positive if equality in (1.5) implies c1 = c2 = . . . = cn = 0.

We can show that for any semidefinite positive kernel k (which we will simply call kernel in
the following) there exists a unique space of real functions on X, called the RKHS (reproducing
kernel Hilbert space) associated to k and a unique function Φk in this space such that
k(x, y) = ⟨Φk(x),Φk(y)⟩, for all x, y. The Kernel Mean Embedding (KME) of a distribution
associated to the kernel k is then defined as :

Φk(P) :=
∫
X
Φk(x)dP(x) = EP[Φk(X)] ∈ Hk. (1.6)

This object is more complex than the vectorisations we presented earlier, because this
time it is valued in an infinite-dimensional Hilbert space, and the integral (1.6) is defined (if
it exists) as a Bochner integral.

The L2 distance between the vectorisation of two distributions is then called the Maximum
Mean Discrepancy, introduced by Gretton et al. [61] for statistical testing.

However, MMD, like all kernel methods, suffers from a computational problem. The
MMD between two distributions can only be accessed via scalar products using the kernel
trick:

⟨Φk(P),Φk(Q)⟩ = EP,Q[k(X,Y )].
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Calculating this scalar product is quadratic with the number of points. Indeed, Φk(P), even
when P is an empirical distribution, can not be easily stored on a computer as it is a function.
These two elements are both prohibitive for the application to flow cytometry.

1.2.4 Random Fourier Features
To overcome this problem, we will use the Random Fourier Features [98] or RFF, a kernel
approximation method.

Random Fourier Features are based on Bochner’s theorem :

Theorem 1.2. A continuous function φ on RD defines a semidefinite positive kernel
k(x, y) = φ(x− y) if and only if φ is the Fourier transform of a non-negative measure.

A direct corollary of this result is that any continuous translation invariant kernel k,
associated to a function φ, where k(x, y) = φ(x − y) is the Fourier transform of a non-
negative measure which we denote Λk and for which Λk(RD) = φ(0). Therefore if we
normalise the kernel by φ(0), Λk is then a probability measure called the spectral distribution
of k.

The kernel can be rewritten as follows:

k(x, y) = Eω∼Λk
[eiω

T (x−y)] = Eω∼Λk
[cos

(
ωT (x− y)

)
].

By Monte-Carlo, using a sample (ωi)
D/2
i=1 iid of Λk, the vectorisation z : X → RD defined by

z(x) =

√
2

D

[
cos(ωT

i x), sin(ωT
i x)

]D/2

i=1
, (1.7)

is such that: k(x, y) = E
[
z(x)T z(y)

]
, where the expectation is taken with respect to (ωi)

D/2
i=1 .

In practice, another vectorisation is commonly used:

z̃(x) =

√
2

D

[
cos(ωT

i x+ bi)
]D
i=1

, (1.8)

where bi are iid samples of the uniform distribution on [0, 2π]. See Gundersen [64] for the
detailed calculation. Although this vectorisation is popular in practice, we would like to point
out that the second version gives the worst results in terms of variance and upper bound for
the Gaussian kernel [113].

If the vectorisation is valued in RD, then the complexity of computing the vectorisations
is linear in both the number of points and the number of random features, i.e. linear in D.
In addition, calculating the vectorisation of a point cloud can be reduced to matrix multipli-
cation, for which GPUs are well suited. To deal with memory overflows on GPUs, we use the
Python package PyKeops [19].
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To sum up, this method allows us to define a function z : X → RD (with D a chosen
hyper-parameter) such that for all x, y: k(x, y) ≈ z(x)T z(y). This method has three advan-
tages (over other kernel approximation methods such as Nystrom). Firstly, the vectorisation
z(P) can be stored on a computer, as it is a vector of RD. Secondly, the MMD between two
distributions is calculated in linear and not quadratic time. And finally, with this z function,
we are still within the framework of the vectorisations presented earlier. All the theorems in
this manuscript apply directly with z without having to modify the proofs.

In Chapters 3 and 4 we will see this function z as an approximation to the Gaussian kernel
and therefore as a way of speeding up computation time, whereas in Chapter 5 the function
z will be seen as a vectorisation in itself, i.e. as a means of characterising a distribution in
the form of a vector which can be used in various applications of flow cytometry.

1.2.5 Contributions
The first contribution (Chapter 2) of this thesis is a literature review on label shift quantifi-
cation. The aim of this chapter is to introduce the reader to this still little-known area of
research in machine learning.

This chapter presents a general (but not exhaustive) overview of the main methods in
the literature, as well as a presentation of the different approaches proposed in the literature
to unify these methods under a single analysis framework. For instance Firat [44] represents
different methods in the form of a constrained regression problem in order to present extensions
of the algorithms from the binary case to the multiclass case. This same representation is
at the heart of the python package Qunfold by Bunse [14]. In a different approach, Garg
proposes to unify under a single analysis the two most commonly used algorithms in practice
(Adjusted Classify and count and Maximum Likelihood Quantification which we both present
in the chapter) in order to justify the practical superiority of one over the other.

This chapter concludes with a presentation of the test protocols proposed in the litera-
ture as well as a presentation and an extension of the work of Sebastiani [104] concerning the
choice of metric to use.

The second contribution (Chapter 3) is a theoretical and practical study of the set of
methods based on mean vectorisations presented in Section 1.2.3. This category of methods
includes several of the methods presented in Chapter 2. The contribution of this chapter
is twofold: on the one hand, within the classical framework of label shift, we obtain an
empirical bound on the approximation error that improves on the bounds obtained for the
various methods, while at the same time being more general because it applies to all the
methods in the category, see Theorem 3.1. This is also the first work to our knowledge that
proposes to unify different methods in the literature in order to obtain a convergence theorem
that applies to all methods. This result also provides a criterion for choosing a vectorisation
function that can be calculated empirically from the labelled training dataset, which can be
used, for example, to choose the best bandwidth parameter when the chosen vectorisation
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is based on the Gaussian kernel, the choice of bandwidth being a classic problem for kernel
methods. In the open set label shift framework, we also obtain an empirical bound on the
approximation error, see Theorem 3.3 and its Corollary 3.2, which is novel, as no analysis of
the error of a quantifier has yet been proposed in an open set label shift framework. This
result highlights a robustness to contamination under the assumption of orthogonality of
the noise vectors with the vectors of the other classes. Under this assumption, the error will
converge towards zero (although more slowly than in the case of Label shift), whereas without
this assumption, the error will converge towards a bias equal to the norm of the component
orthogonal to the vectors of the source. Therefore, to be able to perform quantification
under open set label shift one need a vectorisation that ensures orthogonality with the noise.
The method using a Gaussian kernel is the most suitable for this type of problem, since
the orthogonality of the vectorisations is guaranteed as soon as the distributions are well
separated.

We demonstrate the robustness of Gaussian vectorisation to noise on simulated data and
on cytometry data from Metafora. A final contribution, minor for this chapter, but important
for Chapter 5, is the use of Random Fourier Features [98] a classic method in the literature for
accelerating the computation time of kernel methods, as a method for vectorising distributions.

The third contribution (Chapter 4) proposes to use the information contained in the
variance rather than just the mean of the vectorisations. This is an extension of the previous
chapter for label shift quantification, although the results obtained for open set label shift are
also applicable to these methods.

In the MMD literature on hypothesis testing, it is now well established ( for instance in
a recent article by Hagrass et al. [66] or in older articles by Harchaoui et al. [31, 67]) that
methods using only the information contained in the mean are not minimax. Inspired by their
work, we propose in this chapter to “regularise” the distance used in Chapter 3 by a certain
matrix M . More precisely, while in Chapter 3 the distance used was the L2, here we propose
to use a Mahalanobis-type distance. Using a Bernstein vector theorem, a variant of a result
obtained by Wolfer et al. [127], we obtain another bound on the approximation error, this time
involving the variance, see Theorem 4.2. Using this theorem we then obtain a criterion for
the choice of M which we link to kernel Fisher Discriminant Analysis, a dimension reduction
algorithm. After discussing the form of this optimal matrix and explaining the practical esti-
mation of the matrix, we test the new methods on the same data as in the previous chapter:
simulated data and flow cytometry data from Metafora.

The fourth contribution (Chapter 5) is a case study on the use of Random Fourier Fea-
tures vectorisation for flow cytometry. We are interested in a real dataset containing the
bone marrow analysis of 29 patients suffering from two pathologies: multiple myeloma and
monoclonal gammapathies of undetermined significance (MGUS).

Firstly, we demonstrate the value of this vectorisation for an exploratory analysis of a



28 Introduction in English

Cytometry dataset. In particular, we highlight the failure of the proposed gating strategy to
identify the T cells as well as the Plasmocytes of one of the patients. Secondly, we look
at the use of RFFs for 2 tasks: identifying in the hierarchical clustering tree derived from
METAflow the cluster most likely to be the cells of interest and quantifying the proportions
in each of the nodes of the tree.

Finally, the manuscript ends with the Appendix A, which contains three results on norm
concentration in Hilbert spaces, used in all the proofs in this manuscript. The first theorem
is a vectorial Hoeffding: a classical result based on McDiarmid’s inequality. We complete this
section by presenting a short history of results of this type in the MMD literature. The second
concentration result is a vector version of Bernstein (Theorem A.3) going back to the work
of Pinelis [93] in Banach spaces and Yurinsky [129] in Hilbert spaces. The proof proposed in
this manuscript is taken from Wolfer et al. [127] with two small differences. Firstly, a typo
has been corrected (a log(1/δ) which should have been a log(2/δ)) and secondly, the starting
point of their theorem is based on Yurinsky’s result whereas we use Pinelis’ result. However,
the difference is minimal, since it only affects the constancy in front of the O (1/n) term of
the bound: we have 2/3 whereas they had 4/3. Finally, for completeness, we present a third
theorem, a vector Bennett inequality, this time based on the work of Smale et al. [108] who
themselves base their results on a theorem of Pinelis [93]. The difference again concerns the
constancy in front of the O (1/n) term, this time with a 4 instead of a 2/3.



Chapter 2

Review on Label Shift
Quantification

This chapter offers an overview of the quantification problem, drawing directly from prior
works that have addressed this topic, namely, the recent book Learning to quantify by Esuli
et al. [32], and a review by Gonzalez et al. [58]. However, we will try both to reduce the
scope of their work by focusing only on the problem of label shift quantification, and thus not
discussing parallel problems such as ordinal quantification [39] or multi-label quantification
[84], and to extend their work by looking at areas of the literature that are less well known
to this community.

After a brief overview of the possible applications of quantification, we will present and
discuss a number of methods from the literature, as well as work aimed at unifying these
methods within a single framework. Finally, we present the experimental protocols proposed
in the literature.
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2.1 Introduction

One of the central problems in machine learning is classification. Suppose we have a space
X (usually Rd), a set of c labels Y = {1, · · · , c} and a probability distribution P(X,Y )

on X × Y. Throughout this chapter we will use PX(·) and PY (·) to denotes the marginal
distribution on X and Y of P. In particular, for all k ∈ [c], PY (k) represent the proportions
of point of class k we expect to have in a sample. We will also use P(·|y = k) to denote the
class-k conditional distribution and for all point x ∈ X , P(y = k|x) represent the posterior
probability, i.e. the conditional distribution of the label y given x and can be understood as
the probability that the point x belongs to class k.
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The objective is to find a function (a classifier) f : X 7→ Y that, for a given data point
x ∈ X , predicts the label y associated. Alternatively, we may look for a function f : X → ∆c

that, for a given data point x ∈ X , returns a probability distribution over Y. In this case,
fj(x) is (up to normalisation of f) supposed to estimate P(y = j|x).

We define a loss function L : Y × Y → R or alternatively L : ∆c ×∆c → R and we seek
to minimise the expected classification error :

E(f) := EP(X,Y )[L(f(X), Y )]. (2.1)

Therefore, in classification, the information we seek is related to the individual x. Quan-
tification is a related issue where we are interested in global information about the dataset.
For a given sample, we want to obtain the proportions of the different labels present in the
sample.

Suppose we have two distributions, P(X,Y ) and Q(X,Y ). The first one is the distribution
of the training data and will be referred to as the source distribution, while the second one
is the distribution of the test data and will be referred to as the target distribution. Without
assumptions about the distributions P and Q, no results can be found. There exist a wide
range of assumptions that can be made about the change in distribution, see Quiñonero-
Candela et al. [97] or Storkey [112], but the most classical assumption in quantification is
called Label Shift.

Definition 2.1 (Label Shift). Let P(X,Y ) and Q(X,Y ) be two distributions on X ×Y.
We say that P and Q follow the label shift assumption if ∀i ∈ [c] and ∀x ∈ X :

P(x|y = i) = Q(x|y = i),

the distribution Q can therefore be decomposed as follows:

QX(x) =

c∑
i=1

QY (i)P(x|y = i). (LS)

In other words, the conditional distribution of x given y does not change, but the pro-
portions can change.

Note that this assumption is also sometimes referred to as Prior probability shift or Tar-
get shift. This distribution shift is related to the class of so-called Y → X problems. This
terminology, derived at least from Fawcett et al. [41], describes problems where the labels y

determine the distributions of the data X through a causal mechanism. Cytometry data (see
Section 1.2.2) is a good example of a Y → X problem for which the label shift assumption
seems plausible. From one patient to another, we do not expect the distribution of a partic-
ular cell type to change (or at least we hope not) but we can expect the proportions of cells
to change.
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Suppose we have access to a labelled training dataset {xi, yi}ni=1 ∈ (X × Y)n, drawn
iid from the source distribution P(X,Y ), and a unlabelled test dataset {xn+j}mj=1, drawn
iid from the target marginal distribution QX(·). Using these two datasets, the goal is to
estimate either the target proportions α∗ := QY (·) or the empirical target proportions in
sample {xn+j}mj=1 denoted α̃. We denote by n and m the number of points in the source
and in the target samples and ni and mi the number of points of class i in the source and
target. Note in particular that α̃i = mi/m.

Many methods in the literature do not aim at estimating the proportions in the target
directly but rather the ratio of proportions w(·) := QY (·)/PY (·), or alternatively the empirical
counterpart w̃(i) = mi/m×n/ni. From a practical standpoint, both approaches lead to the
same results, since we have access to a natural estimator for PY (·), i.e. P̂Y (i) := ni/n.
Therefore, we can convert ŵ to α̂ simply by multiplying with P̂Y , and vice versa.

From a theoretical perspective, however, the results in the literature often focus on bound-
ing the quadratic approximation error, which in some cases corresponds to ∥α̂ − α∗∥2, and
in other cases to ∥ŵ − w∥2. To go from one to the other implies taking into account the
approximation error of P̂Y which adds a term in O

(
n−1/2

)
to the bound. Therefore, it is not

always easy to compare the results of different methods. Nevertheless, it is essential to keep
in mind that the estimation of w and α∗ corresponds to two viewpoints of the same problem.

2.1.1 Applications

Quantification is often seen as a sub-problem of classification in the sense that a classifier
f can be used as a quantifier simply by counting the outputs of the classifier on the target
data. It is now widely known in the quantification literature that this approach is sub-optimal
because a vanilla classifier is not robust to distribution shift. (we will discuss this point in
the next section and in Section 2.2.1). Since classification is ubiquitous in machine learning,
developing methods that are robust to any kind of shift (including label shift) has been a
widespread subject. A way to create robust classifiers, as we shall see next, is to estimate
the proportions of the classes by using a quantification procedure. However, the scope of
quantification methods is not limited to classification. An idea that has been pushed by the
quantification community is that quantification is a problem on its own. Forman [46] (2005),
already noted that many problems in machine are not interested by a local information such as
the class of a point x but a global information on the proportions of the sample. Unfortunately,
the sub-optimality of a simple classification method to estimate the proportions is not a widely
known fact.

Let us take a look at the different applications of quantification.

Classification under Label Shift For classification application, it is crucial to con-
sider the label shift as the classification error on the target is not equivalent to the classification
error on the source, but to a weighted version of it:
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EQ(X,Y )[L(f(X), Y )] =

∫
X×Y

L(f(x), y) Q(x, y)dxdy

=

∫
X×Y

L(f(x), y) Q(x|y)QY (y)dxdy

=

∫
X×Y

L(f(x), y) P(x|y)QY (y)dxdy

=

∫
X×Y

L(f(x), y) P(x, y)QY (y)/PY (y)dxdy

= EP(X,Y )[L(f(X), Y )w(Y )], (2.2)

Since classifiers are trained to minimise the expected error (2.1) and not (2.2), they do
not provide any theoretical guarantees on new data that suffer form label shift, unless we
make clear assumption on the "range" of that shift, for instance ∥w∥ ≤ C. This is illustrated
in Figure 2.1. Equation (2.2) shows that under Label Shift a classifier applied directly to
a new dataset is suboptimal. We will discuss the use of classifiers for quantification in the
following sections.

In this setting, quantification methods can be used to estimate the ratios w and then
train a classifier by minimising Equation (2.2) instead of the traditional loss function. Alter-
natively, and less costly for complex classifiers such as neural networks, instead of retraining
the classifier we can use Bayes’ theorem :

Q(y = i|x) ∝ w(i)P(y = i|x),

where the posterior distribution P(·|x) is approximated by f(x).

Fairness Fabris et al. [40] used quantification to address the fairness-under-unawareness
problem. In this setting one wants to assert the fairness of an algorithm w.r.t. certain sensitive
attributes (such as the gender or the race) when legal barriers complicate or prohibit the
collection of sensitive attributes. In other words, Fairness-under-unawareness is the problem
of measuring group fairness when the values of the sensitive attributes are unknown.

One way to measure fairness is to use demographic disparity, i.e. the difference between
“the probability that the classifier outputs positive when the sensitive attribute is present”
minus “the probability that the classifier outputs positive when the sensitive attribute is ab-
sent”. Unfortunately, to compute an estimate of these two quantities, we need access to
the value of the sensitive attribute in our test sample, which is often not available in large
numbers for legal or technical reasons. One way around this would be to train a classifier to
estimate the sensitive attribute using the non-sensitive ones, but this raises ethical concerns.
The authors show that we do not need access to the sensitive attribute of each point, but
only to the proportions of these attributes in the target sample

To do this, we need 2 training data sets. The first, which is typically large, will contain
only the non-sensitive attributes, while the second will contain all available attributes. We
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Figure 2.1: In the top row, the decision boundary and confusion matrix of a SVM
using the Gaussian kernel on imbalanced data are shown. The accuracy for the
first class is low, but the overall accuracy is good as the first class comprises only
10% of the total source data. In the bottom row, the same plot is displayed for
the target data. This time, the first class accounts for 50% of the data, leading
to a notable decrease in accuracy because the marginal accuracy of the first class
remains poor.

use the first to train a classifier (for which we want to compute fairness) and the second to
train a quantifier.

This approach has the advantage of providing a form of anonymisation for sensitive
parameters, as the quantification returns a vector of proportions on the test set, rather than
a function that maps each data point to a sensitive attribute.

However, the authors used a classifier-based quantification method in their experiments,
which negates the benefits of quantification. We could measure Fairness-under-unawareness
using quantifiers that do not rely on classifiers (this is the topic of Section 2.2.5), leading to
anonymisation of the sensitive attribute as desired.
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Conformal prediction Another application of quantification is conformal prediction.
It is a particular instance of classification (or regression) where the objective is to obtain for
a new data (Xn+1, Yn+1) a set function C : X → 2Y with the guarantee that:

P(Yn+1 ∈ C(Xn+1)) ≥ 1− γ,

see Shafer et al. [106] for a tutorial on conformal prediction.
Using general results on conformal prediction under distribution shift [121], Podkopaev

et al. [94] showed that classical methods from the conformal literature could be adapted to
yield asymptotic γ coverage as long as we had a consistent estimator of w.

Direct applications The aspect of quantification that has been most thoroughly ex-
plored in the literature is the idea that quantification is an end in itself. In many areas of
research, the information sought is not local information about each data point, but global
information about the entire dataset. To quote Hopkins et al. [69]:

“Policy makers or computer scientists may be interested in finding the needle in the
haystack [...] but social scientists are more commonly interested in characterizing the haystack.
Certainly, individual document classifications, when available, provide additional information
to social scientists [...] but they do not usually constitute the ultimate quantities of inter-
est.”

Without providing an exhaustive review of all the domains and articles (see chapter 2 of
[32]), we can mention some areas where singular point-wise information is not what is sought.

This is the case, for example, in sentiment analysis [39, 50, 69], where we want to estimate
the proportion of text documents that convey positive or negative opinions. For example, for
a particular news item, how many tweets about it are positive. In epidemiology, one may
be interested in estimating disease prevalence rates across various geographical regions, time
periods, age groups, or genders. Daughton et al. [26] used quantification methods on social
media posts to derive data on public health trends such as flu vaccination rates. Without
going into too much detail, quantification has also been used in ecological modelling [57],
market research and political science [9]. A last application of interest to us is flow cytometry
analysis [30, 49], because in this context the proportions of cells in a sample can be used as
a diagnostic criteria.

2.1.2 Related literature
The term “quantification”, introduced by Forman [46], is not the starting point of the literature
(see for example, the earlier works of Saerens et al. [101]). Moreover, as we have seen, the
problem can also be viewed as the first step of a broader problem of improving classifiers
under label shift, as in the work of Saerens. This results in a fragmented literature.

A large number of articles deal with the quantification problem itself, without explicitly
using this term or mentioning this literature [2, 4, 49, 70, 73, 77] and vice versa, the results
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of these articles are not necessarily known in the quantification literature. One of the aims of
this chapter is also to bridge the gap between these different literatures.

2.2 Methods
Numerous methods have been proposed in the literature so far, many of which are already
implemented in the Python packages QuaPy [83], QuantificationLib [18] and qunfold [14].

Taxonomies of these methods have already been proposed. Gonzalez et al. [58] divided
the methods into 3 categories:

1. Classify, Count, and Correct: These methods use a classifier to make an initial approx-
imation of the proportions and then correct the results to account for its bias.

2. Methods based on adapting traditional classification algorithms to quantification learn-
ing : These methods also use classifiers, but they are trained with a quantification
objective, whereas the methods in the first category use any black-box classifier.

3. Methods based on distribution matching : These methods aim to estimate the propor-
tions by finding the mixture of P(x|y = i) closest to QX(x).

Esuli et al. [32] and Quapy adopt the same taxonomy, with methods from categories
1 and 2 grouped into a larger family of methods called “aggregative methods”. These are
methods that require an initial classification step, as opposed to the non-aggregative methods
corresponding to the third category. However, this way of categorizing does not align with
more recent research that has shown the connections between different methods [17, 30, 44,
52]. We will discuss these works in Section 2.3. We propose here a non-exhaustive overview
of quantification methods, based on the work of Gonzalez et al. [58] and Esuli et al. [32].

Binary and multi-class
Regardless of the taxonomy, the methods we present in this section can be divided into two
categories: methods that can deal with more than two classes, and methods that are restricted
to two classes. The former will be referred to as “multi-class”, while the latter will be referred
to as “binary”. Actually, only a few of the methods we will present are true binary methods,
since most of them can be extended (at least in theory) to the multi-class setting. However,
these methods are often written as minimisation procedures, and the authors do not present
a way to solve the problem with more classes, except by a trivial (and inefficient) grid search
in ∆c := {x ∈ Rc : x ≥ 0,

∑
xi = 1}.

The classical way in the literature to compare “binary” method in a multi-class setting is
the so-called One-vs-Rest (OVR) procedure (sometimes also called One-vs-All). This is the
same technique as in classification, it consists of fitting one quantifier per class k, where each
quantifier is fitted using two classes ⊕ = {y = k} vs ⊖ = {y ̸= k} and then aggregating the
results. Schumacher and his co-authors [103] compared OVR to multi-class and state :
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“By contrast, extending predictions from binary quantifiers to the multiclass case in a
one-vs-rest fashion does not appear to yield competitive results, even when using strong base
quantifiers such as the Median Sweep or the DyS framework.”

Recently, Donyavi et al. [28] gave a simple explanation on this poor performance: the
label shift (LS) hypothesis that is key for all quantification methods is not satisfied. Indeed,
let us compute the marginal distribution of the ⊖ class in the source and in the target:

∑
l ̸=k

PY (l)

PY (⊖)
P(x|y = l) = P(x|⊖) ̸= Q(x|⊖) =

∑
l ̸=k

QY (l)

QY (⊖)
P(x|y = l). (2.3)

In other words, the binary quantifier that is train to estimate the proportion qY (k) will be
applied on data that do not satisfy the label shift hypothesis. “Therefore, OVR quantification
approaches are doomed to underperform” [28].

Note that in the multi-class setting, we want to estimate a vector, while in the binary
setting we only want to estimate the proportion of the first class. To keep the notation simple,
we use the same notation α∗ for the vector of proportions in the multi-class setting, α∗ is
then a vector in ∆c, and the proportion of the first class in the binary setting, α∗ is then a
real value in [0, 1] and the proportions are then given by (α∗, 1− α∗).

To differentiate between the two object, we make it clear whether we are in the multi-class
setting or the binary setting.

2.2.1 Classify Count and Correct

Classify and Count

We have seen that quantification and classification are two related problems. The naive
method, therefore, consists of using a classifier trained on the source data and applying it to
the target data. The estimation of proportions is then given by:

α̂cc =

 1

m

m∑
j=1

1{f(xn+j) = i}


i

. (2.4)

In the quantification literature, this method is referred to as Classify and Count (CC)
[48]. However, this approach offers no guarantee. It is a well known fact in classification that
a change in the marginal distribution of labels leads to a decrease in classification performance
(see for instance He et al. [68]).

More precisely, it can be shown that the classification error can be decomposed as a
sum weighted by the proportions of conditional classification errors (see for instance Gilet et
al. [56]):
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EP(X,Y )[L(f(X), Y )] =
c∑

i=1

PY (i)
c∑

j=1

LijP(f(x) = j|y = i)

 ,

where Lij := L(i, j). Thus, in practice, it is possible to have both a classifier with good overall
classification errors and high conditional errors on small classes, see for instance Figure 2.1.

It has been confirmed empirically in multiple experiments, for instance in Schumacher et
al. [103], that CC yield poor quantification results without adjustments in both binary and
multi-class settings. For instance, if we take the data and the classifier of Figure 2.1, the
kernel SVM trained on the biased training data has a large error on the positive class. The
corresponding CC estimator returns α̂ = (0.813, 0.187) instead of α∗ = (0.5, 0.5).

The reason why CC does not work is because α̂cc is not the estimate of the desired
quantity α∗ := QY (i), but of αcc := Q(f(x) = i). Using Bayes’ theorem along with the
Label Shift assumption:

αcc =

c∑
j=1

Q(f(x) = i|y = j)QY (j)

=

c∑
j=1

P(f(x) = i|y = j)QY (j)

= Cŷ|y × α∗ (2.5)

Where Cŷ|y is the conditional confusion matrix of f . In other words, α̂cc will only be a
good estimate of α∗ if Cŷ|y is the identity matrix, i.e. the classifier is perfect or alternatively
if α∗ is an eigenvector of Cŷ|y. We will come back to this second option in Section 2.2.4.

In the binary case, a theorem by Forman [48] summarises the failure of CC.

Theorem 2.1. For an imperfect classifier even if the number of points in the target is
infinite, the CC method will underestimate the true proportion of positives α in the target
for α > ᾱ, and overestimate for α < ᾱ, where ᾱ is the particular proportion at which the
CC method estimates correctly; that is, the CC method estimates exactly ᾱ for a test set
having ᾱ positives.

This theorem can be visualised in Figure 2.2.
Two approaches can be proposed to fix this: ante-hoc and post-hoc. In the first approach,

we “correct” the classifier before seeing the target distribution. For instance, we can try to
learn a classifier that will perform optimally regardless of the target proportions. This is the
idea behind the Prior Probability Shift literature [12, 55, 56, 120], where the objective is
precisely to obtain classifiers that are robust to changes in the proportions of the classes, i.e.
a label shift. Unfortunately, no comparative study has been conducted yet to determine if
the methods from the Prior Probability Shift literature yield good quantifiers when use with
a Classify and Count procedure.
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Figure 2.2: In a binary case where we only need to estimate the proportion of the
first class, (i.e. positive label) we train a Quadratic discriminant analysis (QDA) on
the source and apply it to the target where we change the proportion of the positive
label, from 0 to 1. Each coloured line represents a QDA trained on the source,
where the percentage of positive label in the source used to train the QDA changes.
For instance CC10% was trained on a source with only 10% of positive label. This
is an illustration of the phenomenon described by Forman in Theorem 2.1. This
figure is inspired by that of Esuli et al. [32].

The second class of approach, more traditional in quantification literature, consists of us-
ing a black-box classifier and applying post-hoc calibrations. The name used in the quantifica-
tion literature for theses methods is Adjusted Classify and Count and was dubbed Black-box
shift estimation by Lipton et al. [77].

Adjusted Classify and count

Following Equation (2.5), one way to estimate α∗ when we have an estimate of αcc is to use
a held-out validation set to estimate Cŷ|y and solve the linear system:

α̂ = Ĉ−1
ŷ|y α̂cc (2.6)

Where, α̂ is the estimated vector of proportions, Ĉŷ|y is the empirical conditional confusion
matrix and α̂cc is the vector obtained through Classify and Count (2.4).

The approach sometimes attributed to Forman [46, 48] in the quantification literature is
actually older and has a longer history in epidemiology [11].
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In its binary version [11, 48], where there are only two classes, and we are interested in
estimating the proportion of the first class α∗, Equation (2.5) is then written as:

α∗ =
αcc − fpr
tpr − fpr

, (2.7)

where tpr = P(f(x) = 1|y = 1) is the true positive rate, and fpr = P(f(x) = 1|y = −1) is
the false positive rate. Note that there is no guarantee that α̂ ∈ [0, 1] when we replace tpr,
fpr and αcc by approximations in Equation (2.7).

Going back to the example in Figure 2.1, from the training confusion matrix we can see
that fpr = 0.02 and tpr = 0.38. The values of fpr and tpr obtained on the test data are
fpr = 0.02 and tpr = 0.35. The estimation of tpr is quite precise, resulting in an estimate
using Equation (2.7) of α̂ = (0.54, 0.46) which is close to the real solution α∗ = (0.5, 0.5).

Forman [47] proposes, in the binary case, an ante-hoc procedure, called threshold policy,
to enhance the method even more. A binary classifier is of the form f(x) = 1ϕ(x)≥1/2,
meaning the classifier predicts class 1 if the model’s output is greater than or equal to 1/2.
Forman suggests changing this threshold to fδ(x) = 1ϕ(x)≥δ, where δ ∈ (0, 1).

The purpose of this method is to find “a threshold that admits more true positives and
many more false positives, yielding worse classifier accuracy but better quantifier accuracy”
[47]. Forman proposed 4 heuristics for the choice of threshold δ (see Figure 2.3):

1. Max : Selects the threshold that maximizes the numerator tpr − fpr.

2. X : Selects the threshold such that 1− tpr = fpr.

3. T50 : Selects the threshold such that tpr = 0.5.

4. Median Sweep (MS): The estimated proportion is given by the median of the propor-
tions obtained for each threshold δ.

For the multi-class case, Lipton et al. [77] proposed a version of Adjusted Classify and
Count, without the threshold policy, under the name Black-Box Shift Estimator (BBSE). In
the case where we want to estimate the ratios rather than the proportions, Equation (2.6)
can be rewritten as:

ŵ = Ĉ−1
ŷ,yŵcc. (2.8)

Here, Ĉŷ,y is the estimated confusion matrix where (Cŷ,y)i,j = P(f(x) = i, y = j), and
ŵcc(i) = α̂cc(i)× P̂Y (i) is the empirical estimate of the ratios using classify and count.

Lipton and his co-authors provided theoretical guarantees on the estimation error of the
ratios.
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Figure 2.3: Figure inspired by Forman [47] where we use the same data and clas-
sifier as in Figure 2.1. On the left, fpr and (1− tpr) are shown as functions of the
threshold threshold δ of the classifier. A classifier with a perfect threshold would
have a region where both curves are equal to 0. The vertical dashed lines represent
the different values of δ for the different heuristics presented: Max, X and T50.
On the right, the estimate proportion of Classify and Count (CC) and Adjusted
Classify and Count (ACC) are shown with respect to δ. The estimate proportion
of the Median Sweep (MS) heuristic is shown as a yellow dashed lines. In green,
the true proportion α∗ = 0.5. In this example, a well chosen threshold can achieve
a higher accuracy than using the ACC method directly.

Theorem 2.2 ([77]). Let λmin be the smallest eigenvalue of the confusion matrix of f .
There exists a constant C > 0 such that for all n > 80 log(n)2λ−2

min, with probability at
least 1− 3cn−10 − 2cm−10 we have :

∥ŵ − w∥22 ≤
C

λ2
min

(
∥w∥2 log n

n
+ c

logm

m

)
,

where we recall that c is the number of classes, n the number of points in the source and
m the number of points in the target.

This bound was improved by Azizzadenesheli et al. [4] and in Chapter 3 of this manuscript.
There are two variants of this method in the literature. The first one consists of solving a
quadratic problem instead of inverting the matrix:

α̂ = argmin
α∈∆c

∥αĈŷ|y − α̂cc∥2, (2.9)

where ∆c = {α ∈ [0, 1]c |
∑c

i=1 αi = 1}, is the (c− 1)-dimensional simplex.
This version was used by Hopkins et al. [69] for text content analysis and in Chapter 3 as

a specific case of our general method: Distribution Feature Matching.
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As discussed in Chapter 3, the difference between (2.6) and (2.9) lies in the fact of
imposing the condition α ≥ 0, the condition

∑c
i=1 αi = 1 being already imposed by the

nature of Ĉŷ|y and α̂cc. Both approaches coincide when α̂ ≥ 0, but in other cases, since we
are looking for proportions, (2.9) will be more reliable than (2.6).

In the case where we want to estimate the ratios, (2.9) is written as:

ŵ = argmin
w∈W

∥wĈŷ,y − ŵcc∥2, (2.10)

where W is the set of vectors such that w ≥ 0 and
∑c

i=1wi×PY (i) = 1. Since the proportions
of the source are unknown, they are replaced by P̂Y := ni/n, the natural estimation of PY .
This approach was used by Tachet et al. [114] as a building block for classification in a domain
adaptation setting, which is more general than label shift.

Another variant, introduced by Azizzadenesheli et al. [4], in the case where we want to
estimate the ratios, consists in regularising the objective (2.9) by penalising it with ∥ŵ− 1∥.
More precisely:

θ̂ = argmin
θ

∥θĈŷ,y − (ŵcc − 1Ĉŷ,y)∥2 + γ∥θ∥2,

ŵ = 1 + λθ̂.

Here, γ is a hyperparameter that controls the strength of the regularisation term, and 1 is
the vector of ones. The regularisation term encourages the estimated ratios ŵ to be close to
the vector of ones, which means that the method seeks solutions where the estimated label
shift is close to zero.

In the absence of label shift, where w = 1, the parameter θ = w − 1 represents the
“amount of shift”. The value of λ is chosen to be proportional to the number of points used
during training. The aim of the regularisation is to make the quantifier less sensitive to the
singularity of the Ĉŷ,y matrix, as Forman proposed with his threshold policy.

CDE-iteration

As mentioned above, one way to improve the performance of a classifier on a new dataset
resulting from label shift is to train it with weights. This approach is known as Cost Sensitive
Learning [42]. In this setting, we define a cost matrix C, where Ci,j represents the cost of
estimating class i when the true class is j. For two classes, we only need to define two values :
c−1 the cost of a false positives, i.e. the price paid for classifying a sample as positive when
it is not, and c1 the cost of a false negatives. In Equation (2.2), the ratio of the proportions
w(y) acts as the weight (c−1, c1).

There is therefore a strong connection between the proportions and the weights (see
Figure 2.4). The costs that should be used when building the classifier satisfy :
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c1
c−1

=
PY (−1)QY (1)

QY (−1)PY (1)
. (2.11)

For example, in the case shown in Figure 2.1, we have PY (−1)
PY (1) = 9, if we denote z :=

QY (1) and fix c−1 = 11, we obtain c1 = 9z
1−z . In Figure 2.4 we keep the same setting with

QY (1) = 0.7 and thus c1 = 21 and with show the difference between learning without weights
(c1 = c−1) and learning with the optimal ones.

Figure 2.4: The impact of learning weight on accuracy is evident when considering
imbalanced source and target distributions. Let us revisit the example from Figure
2.1. In the source distribution, the classes are heavily imbalanced with a ratio of
(0.9, 0.1), while in the target distribution, the imbalance is in the opposite direction
with a ratio of (0.3, 0.7). On the left, the decision boundary and accuracy of a
vanilla kernel SVM (c1 = 1) and on the right the decision boundary and accuracy
of a cost sensitive kernel SVM with the theoretical weight c1 = 21.

The choice of c1 is therefore equivalent to making an assumption about the proportion
QY one is trying to estimate. It is expected that the accuracy would be optimal for the true
choice of c1 (see Figure 2.5).

Class Distribution Estimation Iterate or CDE-iteration proposed by Xue et al. [128] in-
volves training a classifier with initial weights (c−1, c1) set to (1, 1), estimating the proportions
using Classify and Count with this classifier, calculating the weights using Equation (2.11),
and repeating this process until convergence.

1Multiply the loss function of Equation (2.2) by a constant does not change the value of the
minimum, so the values c1 and c−1 are not important, what matters is the ratio between the two
values. Therefore we can set c−1 = 1 without a loss of generality.
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Figure 2.5: Several kernel SVMs with different costs are trained on the same
setting as in Figure 2.4, where the classes are highly imbalanced with a ratio of
(0.9, 0.1) in the training set and the imbalance is in the opposite direction with
a ratio of (0.3, 0.7) in the test set. The figure shows the accuracy of the kernel
SVMs obtained on the test data set based on the choice of cost c1 (equivalent to
choosing a proportion of positive in the test z, since according to Equation (2.11),
z = 9c1/(1 − c1)). The weight associated with the true proportion x = 0.7 is
indicated by the orange dashed line.
CDE is based on the premise that accuracy should be optimal for the true choice
of c1. However, as we can see in this example, this accuracy is within a plateau
and other choice of cost c1 (associated to different proportions z) would lead to
similar accuracy.

Tasche [116] proposed an alternative version of this method that does not involve re-
training. They note that for given weights (c−1, c1), the Bayes estimator is given by the
formula:

gc−1,c1(x) =

{
−1 if P(y = −1|x) ≥ c1

c−1+c1

1 else
(2.12)

Thus, the method proposed by Tasche, which could be called Bayes-CDE, involves training
and then estimating the weights using Classify and Count, and repeating the process by
updating the threshold of the estimator ĝc−1,c1 .

Neither CDE-iteration nor Bayes-CDE are competitive methods in the literature,as shown
by the comparative experiments of Schumacher et al. [103]. This can be explained, on one
hand, by the exemple of Figure 2.5 and on the other hand, by the work of Tasche [116],
which defines a notion of Fisher Consistency for quantification that this methods does not
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satisfy. In other words, the method does not necessarily achieve the correct proportions when
the distributions P(x|y = i) and QX(x) are directly known or equivalently when the number
of points goes to infinity.

2.2.2 Methods that use a soft classifier

The methods presented above only used the predicted class of the classifier. Suppose that
the classifier is “soft” meaning that it outputs a distribution on the space of labels, f(x) ∈ ∆c

is then interpreted as an approximation of P(y|x). An important property of soft-classifier is
the calibration. Let us recall the definition of a calibrated estimator.

Definition 2.2. A classifier f : X 7→ ∆c is said to be canonically calibrated on the source
distribution P if:

∀x ∈ X and ∀j ∈ Y, P(y = j|f(x)) = fj(x).

Intuitively, a classifier is calibrated if “among test instances receiving a predicted proba-
bility vector s, the class distribution is (approximately) distributed as s” [107].

In general, calibration matters because the outputs of such classifier can directly be
interpreted as a confidence level, but in quantification it is even more important because we
can directly estimate the proportions with a calibrated classifier. Indeed roughly speaking,
for a given value s ∈ [0, 1]c, if we look at all the points x such that fj(x) = sj , we know
that sj% of them will be of class j. Some classifier are naturally calibrated (at least when
the number of points goes to infinite) such as logistic regression [131], because the loss used
during training is a calibration loss, while other are known to be overconfident such as neural
network [65] and need to be calibrated using hold-out validation sets and post-hoc calibration
methods (see Silva et al. [107] for an overview on calibration).

The importance of calibration for quantification was brought to light by Garg et al. [52]
and Alexandari et al. [2] who showed that quantification with calibration is “hard to beat”
for at least two methods: BBSE and MLLS. We present the results on the importance of
calibration for MLLS in Section 2.2.3 and we come back to BBSE in Section 2.3.4.

The reason why calibration is not discussed for the other methods in this section is
not because it is not important, but rather because the authors of those methods have not
proposed a theoretical study of the approximation error of their algorithms. We strongly
believe that these methods would benefit from a post-hoc calibration procedure.

Probabilistic Adjusted Classify and count

Adjusted Classify and count (or BBSE) presented above can also be adapted to a soft classifier.
Bella et al. [7] proposed 2 variations in their work. The first one is called Probability
Average (PA), but it is commonly referred to as Probabilistic Classify and Count (PCC) in
the quantification literature, serving as the probabilistic counterpart of CC. It simply involves
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averaging the classifier outputs on the target data:

α̂pcc =
1

m

m∑
j=1

f(xn+j). (2.13)

Naturally, this naive estimator faces the same issues as the standard CC estimator (refer to
Corollary 6 in Tasche [115]).

The other variation, known as Scaled Probability Average (SPA) or frequently referred to
as Probabilistic Adjusted Classify and Count (PACC) or Probabilistic Adjusted Count (PAC)
in the quantification literature, is the probabilistic counterpart of ACC in its binary version.
It involves replacing α̂cc with α̂pcc in Equation (2.7), tpr with the average of the estimator
for class 1 from the source, and fpr with one minus the average of the estimator for class 0
from the source.

Lastly, Lipton et al. [77] introduced a probabilistic version of BBSE (which is a multiclasses
PAC). This approach replaces the confusion matrix in Equation (2.6) with its probabilistic
equivalent. Theorem 2.2 is also valid for this probabilistic BBSE.

Hellinger Distance-y

For every classifier f , we can examine the histogram (with a fixed number of bins b) of
the classifier’s outputs. If we denote Pi := Pi(b) the population histogram with b bins
corresponding to the output of the classifier on the distribution P(x|y = i), and Q the
population histogram corresponding to the outputs of the classifier on the target distribution,
then because of the Label Shift hypothesis (LS), we have :

α∗P1 + (1− α∗)P2 = Q (2.14)

The method proposed by González-Castro et al. [59] is to use the Hellinger distance to
find the weight α ∈ [0, 1] that minimise the distance between Q̂ and

∑
i αiP̂i, where P̂i and

Q̂ are the histograms estimated from the data :

α̂ = argmin
α∈[0,1]

HD

(
c∑

i=1

αiP̂i, Q̂

)
. (HDy)

The find the minimum of (HDy), the authors proposed a simple grid search on [0, 1].
An important caveat is that the method depends on the number of bins used to compute

the histograms. This hyperparameter has a important impact on the results, but the authors
did not propose a criterion for choosing it. Instead, they proposed an ensemble procedure to
aggregate the results, which we return to in Section 2.2.6.
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Figure 2.6: Figure inspired by Gonzalez et al. [59] with the data for Figure 2.1.
The figure illustrates the output distributions of a kernel SVM for the two classes
in the source (left and middle) and the target (right).

Distribution y-Similarity

Maletzke et al. [79] proposed an extension of the previous method by replacing the Hellinger
distance with other distances. This results in a range of methods (including HDy and
Wasserstein-y that we present next).

Among the distances proposed to compare the histograms, we can list Squared Euclidean,
Manhattan, Jensen-Shannon divergence, Hellinger (HDy) or Topsøe, which seem to give the
best results in their experiments, although it is not clear whether this result depends on the
data they choose or if there exists a theoretical argument to justify it.

As explained in detail by Moreo et al. [85], Firat [44] was the first to propose an extension
for HDy and DyS to the multi-class setting. Their idea is to compute an histogram (with
b bins) for each of the c marginal, and then concatenate the vectors to obtain a (c × b)

vectorial representation of the data. As Moreo pointed out, this has the (unwanted) side
effect of giving a representation that is no longer a probability distribution, since they sum
to c, which makes it strange to use distances such as Hellinger or Wasserstein. Dividing the
vector by c would lead to a vectorial representation that is artificially bounded by 1/c. An
alternative would be to compute the mean Hellinger distance of each marginal. As pointed
out by Moreo and his co-authors the two procedures are equivalent up to constant.

One way to fix this would be to simply compute a histogram directly on the simplex, but
this scales combinatorially with the number of classes and bins, making the method unsuitable
for large numbers of classes. Therefore if we want to extend HDy and DyS to the multi-class
setting we have a trade off to make. Either the problem scales linearly with the number
of classes, but we only consider the information contained in the marginals, or the problem
scales exponentially with the number of classes, but we have access to all the information.
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Figure 2.7: Figure Inspired Moreo et al. [85]. The figure illustrates the output
distributions of a kernel SVM for the three classes in the source (upper left) and
the target (upper right). Instead of comparing the two distributions using the
histograms, Moreo et al. suggested first estimating the density on the simplex
using a KDE and then comparing the density.

Kernel Density

Moreo et al. [85] proposed a new method to harness the power of classifiers without suffering
from the pitfalls of histogram representations. To do this, their method, called KDEy, relies
on a kernel density estimation of the PDF of f(x) with a Gaussian kernel. The method is
illustrated in Figure 2.7. For each class, we compute Li(f) = 1/ni

∑ni
i=1 δf(xi) the empirical

distribution of the classifier outputs, where δx is the Dirac measure on x. Then, using a
classical Gaussian KDE, they estimate the PDF of this distribution p̂Li(f). The goal is now
the same as in HDy and DyS: find the mixture of p̂Li(f) that is “closest” to q̂L(f), where q̂L(f)
is the KDE estimate of the classifier outputs on the target distribution.
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min
α∈∆c

D

(
c∑

i=1

αip̂Li(f), q̂L(f)

)
(2.15)

They proposed 3 methods, all of which use a different D, and all of which differ in the
optimisation procedure used to solve (2.15): The first uses the Hellinger distance as D, which
leads to a natural extension of (HDy). In fact, this first approach is more general, as it can be
used for any f -divergences, such as the Total Variation Distance, Jensen-Shannon or Topsøe.
For this class of functions D, we can solve (2.15) using a Monte Carlo approximation. The
second uses the Cauchy-Schwarz divergence because we can compute a close form solution.
Finally, they suggest using the Kullback-Leibler divergence. The KL divergence is also an f -
divergence and so we could use a Monte Carlo approximation, but since KL is closely related
to the maximum likelihood framework, we can solve (2.15) using the EM algorithm. This last
method, which the article shows to be the best in their experiments, can be seen as a natural
extension of the maximum likelihood framework that we present in detail in Section 2.2.3.

Wasserstein Distance

Let us recall the definition of the p-Wasserstein distance between two empirical distributions:
a =

∑n
i=1 γiδai and b =

∑m
j=1 σjδbj , where (ai) and (bj) are points in the space X , γ ∈ ∆n,

and σ ∈ ∆m.
We denote Π(γ, σ) = {M ∈ Rn×m : M1n = γ and MT 1m = σ} the space of coupling

matrices between γ and σ. The Wasserstein distance between a and b, is given by:

W p
p (a, b) = inf

M∈Π(γ,σ)

n,m∑
i,j

∥ai − bj∥pMi,j . (2.16)

This distance could be applied to histograms, resulting in a DyS method. However,
Maletzke et al. [79] proposed a variant, called SORD, in which they use the “earthmover
distance” i.e. W1, not on the histograms, but on the outputs directly as we presented in the
previous section, leading to the following minimisation problem:

argmin
α∈∆c

W1

(
c∑

i=1

αip̂Li(f), q̂L(f)

)
. (2.17)

The main advantage of SORD is that it no longer depends on the number of bins b

and it can naturally extended to the multiclass setting. However the minimisation procedure
proposed by the authors to solve (2.17) is only applicable in the binary case.

Freulon et al. [49] proposed a similar method, which we present in Section 2.2.5, where
they solve (2.17) directly on the data without first transforming the data using a classifier.
We believe that the minimisation procedure they developed for their method could be used
to solve (2.17).
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Forman’s Mixture Model (FMM)

Forman [48] proposed to use the cumulative distribution function (CDF) of the outputs (see
Figure 2.8). To compare the cdf, he used what he called the PP-Area metric. As pointed
out by Firat [44], this is equivalent to using the L1 norm on the cumulative sum (cumsum)
of the bins in the CDF. Castaño et al. [17] also show that this is equivalent to the method
SORD presented above. In fact, this equivalence is due to a general fact about Wasserstein
distance in one dimension: the Wp distance between two densities is equivalent to the Lp

norm of the two CDFs.

Figure 2.8: Orange line represents the cumulative distribution function (CDF) of
the outputs of the SVM for the first class in the source, while prune is for the
second class. The CDF of the target is shown in yellow. Additionally, the CDF of
the source, reweighted using the true weight (0.7, 0.3) of the target, is illustrated
in gray.

2.2.3 Maximum Likelihood Quantification
Another way to view quantification is to consider it as a parametric model for which we aim
to estimate the parameter. More precisely, let

M :=

{
Pα :=

c∑
i=1

αiP(x|y = i); α ∈ ∆c

}
, (2.18)

be a parametric model. Under the label shift assumption, we know that Q ∈ M. As always,
we can view the problem from the perspective of ratios, and in this case, we set up the model
as MW := {

∑c
i=1wiP(x|y = i), w ∈ W}, where W := {w ∈ Rc |

∑c
i=1wiPY (i) = 1}.
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The maximum likelihood algorithm was introduced by Saerens et al. [101] as an alter-
native to the classical “confusion matrix” method presented earlier. The method is called
MLLS (Maximum Likelihood Label Shift) in Alexandari et al. [2] and Garg et al. [52], EMQ
(Expectation Maximisation Quantifier) in Saerens et al. [101], and SLD algorithm, named
after the authors of the original article (Saerens-Latinne-Decaestecker), in the quantification
literature, [32, 33, 83].

We will stick to MLLS, firstly because a significant part of the analyses we will discuss
come from articles that refer to it by this name, and secondly because the estimator is
independent of the optimisation method used (expectation maximisation).

A way to find the best parameter α in M is to use the maximum likelihood estimator.
Given a sample {x1, · · · , xm} drawn from the true target marginal distribution q, we seek to
maximise the log-likelihood defined as:

l({x1, · · · , xm};α) =
m∑
k=1

log
c∑

i=1

Q(xk|y = i)αi

= C +
m∑
k=1

log
c∑

i=1

P(y = i|xk)
PY (i)

αi. (2.19)

For the detailed calculations, see, for example, Alexandari et al. [2]. The quantities
P(y = i|xk) and PY (i) are unknown, so we have to replace them with plug-in estimates:
P̂(y|xk) := f(xk) and P̂Y (i), where f is an estimator obtained by training on the source
data. Let us present some of the results proved by Alexandari et al. [2].

Lemma 2.1. Regardless of the estimators f and p̂, the function
∑m

k=1 log
∑c

i=1
fi(xk)

P̂Y (i)
αi

is concave on α and bounded by above as long as P̂Y > 0.

Thus, for given f and P̂Y , the maximum likelihood problem will have a unique maximiser.
The EM algorithm used by Saerens et al. [101] is, therefore, only a means to maximise the
likelihood and not a key feature of the method.

To find the ratios wi =
QY (i)
PY (i) instead of the proportions αi, Garg et al. [52] reformulated

the problem as follows:

w̃ := argmax
w∈W

m∑
k=1

log
c∑

i=1

P(y = i|xk)wk. (2.20)

And in the case where the classifier f is used:

w̃f := argmax
w∈W

m∑
k=1

log(f(xk)
Tw) (2.21)

The work of Alexandari et al. [2] has shown the practical superiority of MLLS over BBSE
when the estimator f used is well-calibrated, see Definition 2.2.



52 Review on Label Shift Quantification

Under certain technical assumptions, Garg et al. [52] obtained a convergence theorem for
well-calibrated classifiers f .

Theorem 2.3 ([52]). For any calibrated classifier f , we have:

∥w̃f − w∥ ≤ O(m−1/2)

mini PY (i) σf
,

with σf being the smallest eigenvalue of the matrix EQ[f(X)f(X)T ] and m the number
of points in the target.

The absence of dependence on the number of points n in the source may be surprising.
In reality, this dependence arises from assuming the classifier is calibrated. By using Lemma
5 of the same article, we obtain another convergence theorem, that take into account the
post-hoc calibration.

Corollary 2.1 ([52]). For any classifier f after a post-hoc calibration procedure, we have:

∥w̃f − w∥ ≤ O(m−1/2) +O(n
−1/2
v )

min i PY (i) σf
,

where nv is the number of points used during the calibration procedure (nv < n).

Throughout the thesis we have been able to test our methods in different settings (simu-
lated data, real data, image data) and to compare them with some of the methods presented
in this chapter. Provided that an appropriate calibration method is used, for instance the
bias-corrected calibration in Alexandari’s paper, MLLS outperforms the other methods we
were able to test. This method also has the advantage of being fast (without taking into
account the training time) and of not being affected by the curse of dimensionality, since it
operates on the output space of the classifier of dimension the number of classes.

This result has also been observed in previous experiments: Alexandari et al. [2], Moreo
et al. [86] and, to a lesser extent, Schumacher et al. [103].

However, more recent work based on ensemble methods, which we present in Section 2.2.6,
was able to outperform MLLS in a quantification contest [34], and the method of Moreo et
al. [85] KDEy that we presented in Section 2.2.2 combined with the KL divergence (this
method called KDEy-ML can be seen as a natural extention of MLLS) was also shown to
perform better.

2.2.4 Classifier trained for Quantification
The previous methods used a classifier trained on the source distribution and applied a post-
hoc correction method to estimate proportions by correcting the biases of classify and count.
Other ante-hoc methods from the imbalance classification literature [12, 55, 56, 120], al-
though less explored in the quantification literature, aims to train a classifier that performs
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well regardless of the proportions in the target. As previously said, no comparative study has
been conducted yet to determine if the methods from this literature yield good quantifiers.

In this section, we will focus on ante-hoc methods that aim to train classifiers with a
loss function designed for quantification. We have said that CC only works if the confusion
matrix is the identity matrix, in other words, if the classifier is perfect. However, according to
Equation (2.5), another scenario is possible: if the vector of proportions we want to estimate,
α∗, is an eigenvector associated with the eigenvalue 1 of the confusion matrix Cŷ|y.

In the case of binary classification, we can give a concrete meaning to this scenario: if
P(f(x) = 1|y = 0) = P(f(x) = 0|y = 1) then α∗ = Cŷ|yα

∗ and therefore αcc = α∗.
Indeed, even with many classification errors, if the number of false positives is equal to

the number of false negatives, then the estimated proportions will be accurate. Here we see
the global nature of the information sought in quantification.

The algorithms presented in this section are based on this idea, we are looking for a
classifier that does not minimise classification errors, but rather compensates them.

Quantification Trees

Quantification Trees, and by extension Quantification Forest, is a family of methods proposed
by Milli et al. [82] as an adaptation of Decision Trees, where the splitting criterion is designed
for quantification.

Two criteria were proposed. The first one, called “Classification Error Balancing”, tries to
balance the number of false positive and false negative in a split. For a given subset of points
S, for each class y ∈ Y, we note FPy(S) the number of false positive in S and FNy(S) the
number of false negatives. The criterion for a split is given by :

E(S) = ∥Ey(S)∥22, where Ey(S) = |FPy(S)− FNy(S)|

The second, “Classification-Quantification Balancing”, is a mixture of a quantification
criterion and a classification criterion:

Ē(S) = ∥Ēy(S)∥22, where Ēy(S) = |FPy(S)− FNy(S)| × |FPy(S) + FNy(S)|

|FPy(S)−FNy(S)| measures the quantification error, while |FPy(S)+FNy(S)| measures
the classification error.

Just as we obtain random forests from decision trees by using subsets of features and
subsets of data to create multiple “independent” trees, the authors have proposed quantifica-
tion forests. For each subset, a quantification tree is calculated and the proportions of each
tree are averaged to obtain the estimate.
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Using Non-decomposable measures

One way to make a classifier suitable for quantification is to replace the loss function used
during training with a loss more suitable for quantification, in Section2.4.1 we present such
losses. However, training a classifier with these losses is complex because the metrics are not
additive with respect to the points (xi, yi). For the reasons explained above, a classification
error on a point can lead to an improvement in the quantification error. This type of error is
referred to as multivariate performance measures or non-decomposable measures.

∆(f) = ∆((f(x1), · · · , f(xn)); (y1, · · · , yn)) (2.22)

Examples in this category include the F1-score, the ROC area or the f -divergence calcu-
lated on the class proportions.

Training a classifier on this type of error is non-trivial, but several papers in the literature
have addressed the problem. Joachims [72] proposed a polynomial time optimisation method
for an SVM on this type of measurement and direct application of this SVM for quantification
was proposed by Esuli et al. [38]. In their paper, the authors chose the Kullback-Leibler
divergence between the estimated proportions and the true proportions as a non-decomposable
measure. Note that an extension of this work could be to use any of the metrics presented in
Section 2.4.1, as long as it can be expressed in terms of the confusion matrix. Barranquero
et al. [5] has proposed a variant of this method. Based on the idea that a good quantifier
should also be a good classifier, Barranquero and his co-authors proposed a new measure,
called the Q-measure, which balances classification and quantification errors. More precisely,
if we denote cperf as the classification error and qperf as the quantification error, then the
Q-measure is given by

Qβ = (1 + β2)
cperf × qperf

β2cperf + qperf
, (2.23)

with β the trade-off parameter. Unfortunately, the SVM proposed by Joachims does not scale
well with either the number of classes or the number of points.

Narasimhan et al. [88] have shown that for certain non-decomposable measures, such as
the F1 score, an iterated stochastic gradient descent algorithm converges (exponentially fast
in the number of iterations) to a minimiser. However, this result is restricted to the binary
case and, as with Joachims, to linear classifiers.

More recently, Sanyal et al. [102] proposed an optimisation method, inspired by Narasimhan’s
method, for neural networks. The idea of this method is to split the network into two sets
of layers. The first layers of the network are trained only once, while Narasimhan’s method
is applied to the last layers of the network. For example, if we restrict ourselves to the last
layer, then Sanyal’s procedure simply consists of applying Narasimhan’s method with a data
transformation step performed by the network.
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2.2.5 Non-aggregative methods

So far, all the methods presented here have used a classifier in one way or another. There
are two reasons why there are so many aggregative methods, i.e. methods that aggregate the
outputs of a classifier. On the one hand, classification is a very classical problem with a rich
and well-defined literature, since quantification is a sub-problem of classification, it is logical
that the development of quantification started with modified classification methods. On the
other hand, one of the main motivations for quantification, as discussed in the introduction,
is to improve classification by taking into account the proportions. This implies that a pre-
trained classifier is available, and therefore using it as a quantifier is probably the best solution
in terms of computational complexity.

As Esuli et al. pointed out in their book “Learning to Quantify” [32], classification is a
more “complex” problem than quantification in the sense that every classifier is a quantifier,
but the reverse is not true. The training step of a classifier could therefore be a superfluous
method to obtain proportions.

In this section we present methods that do not rely on a classifier.

Hellinger Distance-x

A similar approach to HDy, also proposed by González-Castro et al. [59], is to compute
histograms directly from the data and to solve:

α̂ = argmin
α∈∆c

HD

(
c∑

i=1

αiPi, Q

)
(HDx)

where Pi is the histogram of class i and Q is the histogram of the target. For multidimensional
data we have the same problem as for (HDy) and Dys, and the same discussion applies here.

The proposed methodology has two defects. First, the authors only proposed this method
for the two-class setting, and therefore did not propose a minimisation procedure to solve
(HDx) other than an extensive search on [0, 1], which does not scale well with the num-
ber of classes. Secondly, this method depends on the number of bins used to compute the
histograms. This hyperparameter has a big impact on the results, but the authors did not
propose a criterion for choosing it. Instead, they proposed an ensemble procedure to aggre-
gate the results, which we detail in Section 2.2.6

Similar to how DyS is a generalisation of HDy for distances other than the Hellinger
distance, one could propose Distribution x-Similarity (DxS) as a generalisation of HDx using
other distance functions. However, to the best of our knowledge, this approach has not been
proposed in the literature although the distribution feature matching approach we present in
Chapter 3 of this manuscript includes this method when the distance used is the L2 distance.
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ReadMe

The method ReadMe by Hopkins et al. [69] stands out in this list, as it was specifically
designed for text categorisation. However this method is dated, as it predates modern deep
neural network based text processing methods.

Starting from a dictionary of size K, a text is transformed into a binary vector S of
{0, 1}K , where S(D)i = 1 if the i-th word from the dictionary is present in the text. Analo-
gous to the calculation done to get BBSE, we get the following equations:

Q(S) =

c∑
i=1

P(S|y = i)QY (i) (2.24)

Here, q(S) is the probability of having the profile S in the target, P(S|y = i) is the probability
of having the profile S in documents of category i (note that under the label shift assumption,
P(S|y = i) = Q(S|y = i)), and QY (·) are the proportions we want to estimate.

Due to the sparsity of the problem, and since 2K ≫ n, it is challenging to accurately
estimate these quantities when the dictionary size is large. To address this issue, Hopkins
proposed a bagging strategy, where a small number of words from the dictionary is used at
each iteration. Equation (2.24) is solved for this reduced dictionary. The results are then
aggregated. The resulting system of equations can be solved by least squares minimisation,
as proposed in Equation (2.9).

Maximum Mean Discrepancy

We recall that for any symmetric and semidefinite positive kernel k defined on X , one can
associate a Hilbert space denoted Hk, or simply H when there is no ambiguity, and a “feature”
mapping Φ : X → H such that ⟨Φ(x),Φ(y)⟩ = k(x, y).

This mapping can be extended to the space of distributions by taking the expectation:

Φ: P 7→ Φ(P) := EX∼P[Φ(X)] ∈ H. (2.25)

This embedding is called Kernel Mean Embedding (KME). We refer the reader to Muandet
et al. [87] for a survey on KME. Note that it is sufficient to have EP[

√
k(X,X)] < ∞ to

ensure the existence of Φ(P), see Smola et al. [109].
An important property of this mapping is that, even though we do not have direct access

to it because it is an infinite dimensional vector, we can still compute scalar products between
mappings using the formula ⟨Φ(P),Φ(Q)⟩H = E(X,Y )∼P⊗Q[k(X,Y )], this property is known
in the machine learning literature as the kernel trick.

The function :
DΦ(P,Q) = ∥Φ(P)− Φ(Q)∥H,

is a pseudo-distance on the space of measures on X , called the Maximum Mean Discrepancy
or MMD [62]. Using the kernel trick, we can compute the MMD between two distributions:
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D2
Φ(P,Q) = EP,P[k(X,X)] + EQ,Q[K(Y, Y )]− 2EP,Q[k(X,Y )].

In the literature, we found two articles dealing with quantification using kernel methods.
Iyer et al. [70] used the Gaussian kernel defined as

k(x, y) = exp

(
−∥x− y∥2

2σ2

)
,

and Kawakubo et al. [73] used the energy kernel defined as

k(x, y) = ∥x∥+ ∥y∥ − ∥x− y∥,

which is indeed a kernel (see Sejdinovic et al. [105]).
However, these methods can be generalised to any kernel. In particular, to deal with the

quadratic complexity of kernels methods we propose in Chapter 3 to use Random Fourier
Features.

Both Iyer and Kawakubo proposed to use the MMD distance to search for the mixture
of the source embeddings that is closest to the embedding of the target. More precisely,
Kernel-based method for quantification solve the following minimisation problem:

α̂ = argmin
α∈∆c

MMD

(
c∑

i=1

αiP(x|y = i),QX(x)

)
(2.26)

We can minimise (2.26) using any available QP solver, as described in Section 3.4.1, and
so this method is suitable even when the number of classes is large.

Regularized Wasserstein distances

Freulon et al. [49] proposed to do quantification using the Wasserstein distance. This method
is equivalent to the one presented above, except that we replace the Maximum Mean Dis-
crepancy by the Wasserstein Distance. The estimation is given by the following optimisation
problem:

α̂ = min
α∈∆c

W2

(
c∑

i=1

αiP̂(x|y = i), Q̂X(x)

)
(2.27)

where P̂(x|y = i) and Q̂X(x) denote the empirical distributions.
Two problems arise when we want to solve (2.27). First, computing the Wasserstein

distance has a complexity of O(n3 log(n)), which makes it impractical for large data, even
more so than kernel methods. Secondly, for two classes, a simple grid search is sufficient to
find the minimum, but if one wants to apply the method in a multi-class setting, an efficient
minimisation procedure is necessary.

Freulon and his co-authors solve these problems by replacing the Wasserstein distance
by the entropic regularization of W2, introduced by Cuturi [25], because the optimisation
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problem can be solved efficiently on a GPU. The entropic regularization smooths the orig-
inal formulation of the Wasserstein distance. More precisely, with the same notation as in
Equation (2.16) the distance between two distributions a and b is defined as:

W ε(a, b) = inf
M∈Π(γ,σ)

n,m∑
i,j

∥ai − bj∥2Mi,j + εH(M), (2.28)

where H is the entropy function defined as H(M) =
∑

i,j(log(Mi,j)− 1)Mi,j .
Based on this definition, Freulon proposed a minimisation procedure that is also applicable

in the multi-class setting. Without going to much into the details, simply note that the
regularised Wasserstein distance between two distributions a and b can equivalently be written
as:

W ϵ(a, b) = max
u

EY∼b[gε,a(Y, u)], (2.29)

for a certain function gε,a. From this, Freulon and his co-authors propose two minimisation
procedures to solve (2.27), both involving stochastic gradient descent.

Note that W ε does not define a distance between distributions. An extension of the
work of Freulon et al. as mentioned by the authors, could be to use the Sinkhorn Divergence
defined as:

Sε(a, b) = W ε(a, b)−W ε(a, a)−W ε(b, b), (2.30)

which has all the desired property: “positivity, convexity, metrization of the convergence in law
and scalability to large datasets” [43]. In particular, it can be shown (see Ramdas et al. [99])
that the Sinkhorn divergences interpolate between W2 and the MMD distance associated to
the energy kernel we defined above.

Deep Quantification Networks

The use of a deep neural networks for quantification has already been presented in this chapter.
For instance, Sanyal et al. [102], based on the work of Narasimhan et al. [88], proposed to
train a deep neural network with a loss function designed for quantification, see Section 2.2.4.
The classifier-based methods presented in Sections 2.2.1, 2.2.2 and 2.2.3 can all use a neural
network as their classifier and in particular, MLLS (Section 2.2.3) has been shown to be
particularly efficient when used with a calibrated deep neural network, see [2, 52]. Moreover,
in Chapter 3, we present a framework that embeds the distribution using the penultimate
layer of a neural network trained for classification. However, none of the methods discussed
so far were architectures specifically designed for quantification.

Motivated by the success of deep learning in machine learning, Qi et al. [96] proposed
Deep Quantification Networks (DQN), a framework to use the expressive power of neural
networks to perform quantification without the unnecessary step of classification.

Starting with a source data set {xi}ni=1, the algorithm first performs a splitting strategy
to create a set of K bags, each containing n/K points. Then, for each point of each bag,



2.2. METHODS 59

a “feature extraction” function is used to embed the data in a high-dimensional space. This
embedding can be done either by defining an architecture to be trained during the training
of the DQN, or alternatively by fine tuning a pre-existing neural network. The third step is
to aggregate the embedded data using, for example, a max, a mean or a median. With these
3 steps, each bag is now represented by a single vector, using a fully connected layer and a
softmax, the model outputs a prediction of the proportions in the bag as if the bags were
single points in a classical classification problem.

The two key elements of DQN are the splitting strategy and the aggregation method. We
come back to the splitting strategy in Section 2.4.1 because this issue also arises in the design
of evaluation protocols for quantification, and we focus here on the choice of aggregation
method. As pointed out by Pérez-Mon et al. [95], this layer is part of a wider literature
on the design of neural networks for use on sets [75, 132], where a set is an unordered,
arbitrarily long sequence of data points {xi}. To do this, the authors of this literature use a
permutation-invariant layer and a pooling strategy to reduce the embeddings of each element
of the set to a single embedding that can be processed with a dense fully connected layer
and a softmax. The simplest form of permutation-invariant are the max, mean and median
proposed by Zaheer et al. [132] and used by Qi et al. for their DQN, but Lee et al. [75]
proposed to use an attention mechanism that has not been used for quantification yet.

For quantification, Pérez-Mon et al. proposed a different approach. They use differentiable
histogram layers, a type of permutation-invariant layer proposed by Yusuf et al. [130], which
allows the histograms of each feature to be approximated by a differentiable function that can
be trained by back-propagation. Their method HistNetQ was shown to outperform MLLS in
a quantification competition [35].

2.2.6 Aggregation of quantifiers

As we have seen in the previous sections, we have a wide choice of algorithms at our disposal.
One way to harness this diversity is to use different quantifiers and aggregate the results.
This idea has already been presented in previous sections, for example Forman’s Median
Sweep Threshold policy (Figure 2.3) for ACC consists of taking the median of the proportions
obtained for each threshold. To choose the number of bins in (HDx) (or DyS), since we do
not have a theoretical criterion, the authors proposed to use different numbers of bins and
then aggregate the results with the median.

However, the two methods presented have aggregated the results because they lack a
criterion for choosing the hyperparameters and not so much to exploit the diversity of the
methods available. This is not the case for quantification forests, presented in Section 2.2.4,
that proposed to train multiple quantification trees with different subsets of features and
samples, and then average the results of each tree to estimate the proportions similar to the
classical classification forest.

In this section, we present quantification methods that use multiple quantifiers.
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Ensemble models for quantification

Ensemble methods in classification are techniques that combine multiple individual machine
learning models to improve the overall performance of the classifier. In this family of methods
we count for instance Gradient-boosted trees, Random Forest or Bagging methods in general.
This kind of method is widely known to be efficient, for instance XGBoost [21] is the winner
of many data challenges on Kaggle.

Pérez-Gállego et al. [90] proposed to adapt this kind of strategy to quantification. The
principle is the same as in the classification case. Starting from a source sample, we generate
a list of proportion vectors β1, · · · , βk, where k is the number of different models in the
ensemble. For each of these proportions we subsample bags from the source enforcing the
sampled proportions to be equals to βi. Each model is then train on its bag. On the target
the final estimate is simply the mean of the estimate of each model.

In their papers Pérez-Gállego et al. proposed to use CC (2.4), ACC (2.7) and HDy (HDy)
but we could use other methods presented in this chapter.

This simple approach was enhanced by the same authors [89] with a dynamic strategy to
aggregate the outputs of each model. The key idea, is to only use for prediction the classifier
that were trained with bags that had proportion vectors βi close to the target proportions.
As it is unknown, the model first estimates α̂ using all the models, then ranks the models
according to D(α̂, βi) where D is a suitable distance or divergence, and finally only uses for
the aggregating phase σ% of the model, where σ is an hyperparameter.

This method therefore depends on two key elements: a way to sample proportions βi and
a distance D to compare the proportions. We come back to this in Section 2.4.

MC-SQ and MC-MQ

Donyavi and her co-authors [28] proposed an extension of this approach with two algorithms:
MC-SQ for multiple classifier, single quantifier and MC-MQ for multiple classifier, multiple
quantifier. The idea this time is not to split the source into different bags, but to use k

different classifiers on the source, and then use l aggregative quantifier algorithms, each with
all the classifiers leading to k × l estimates, which are aggregated using the median (but it
could be any aggregation function) to get the final results.

QuaNet: Deep learning for Quantification

Esuli et al. [37] designed QuaNet, a recurrent architecture that takes as input a sample from
the target distributions and outputs the estimated proportions.

To do so, they first train a deep neural network f on the source distributions. For a target
sample, QuaNet first compute the embeddings of all points (namely the penultimate layer
of f) that they sort using the approximation given by the network of P(y = 1|x). QuaNet
interprets this list as a time series indexed by the probability that the embeddings belong
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to the first class. The data pass through a bidirectional LSTM [60] which outputs a high-
dimensional vectorisation. Meanwhile, using the network f , they estimate the proportions
using the method based on multiple classifiers that we presented: CC (2.4), ACC (2.7), PCC
(2.13) and PACC.

Figure 2.9: Architecture of QuaNet, taken from [37].

The embedding and output of the quantifiers then pass through a dense neural network.
Figure 2.9 shows the QuaNet architecture.

QuaNet and DQL both have in common the use of a dedicated neural network architecture
for quantification, but while DQL is a non-aggregative method that learns to embed the
data to perform quantification, QuaNet aggregates the results of multiple classifier-based
quantifiers.

QuaNet has a number of shortcomings that we would like to highlight. First, the method
is only suitable for the binary case, as is the case for a number of methods in this section.
Second, training such a model is complex, since the data the model takes as input is not a
sample from the source, but a list of distributions, this implies having access to a large number
of data sets, as it is a well-known shortcoming of neural networks that they require large data
sets to be effective. Note that in this case we need at least one large dataset to train f , but
also a large number of datasets to train the LSTM. Alternatively, if we only have one source
sample, we can split the sample in half, use one to train f , and with a resampling scheme to
generate multiple prevalence on the second sample, we can train the LSTM with the same
strategy as in DQL. Third, the quantifiers used as input to the LSTM are too redundant and
include two methods that are widely known to be ineffective: CC and PCC. However, this
can easily be remedied by using some of the many methods we have presented.

2.3 Unification and joint analysis
Several works in the literature have attempted to unify the various methods presented in the
previous sections under a common framework.

In the quantification literature, Firat [44] was the first to notice that most of the methods
presented in the previous section can be recast as a constrained multivariate regression task.
He uses this new framework to extend existing binary quantifiers to the multiclass setting.
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This approach defines two objects: a feature transformation function and a loss function. This
approach is at the heart of the Python package qunfold (Bunse [14], 2023). However, this
framework was not proposed to derive a common analysis, which explains why the framework
is so general. In fact we will see that it encapsulates almost all the methods we have presented.

Bunse [13] (2022) showed the link between quantification and a physic problem called
unfolding that we will not present here. His work is closely related to that of Firat, with
the addition of a regularising term. Once again, this work was not done to derive a common
theoretical analysis.

More recently, Garg et al. [52] were the first to propose a theoretical study of MLLS, which
we partly presented in Section 2.2.3. In their analysis, they presented a common framework
that regroup both BBSE and MLLS to explained why MLLS gives better results than BBSE,
we present their work in Section 2.3.4.

Finally, we unify several methods from the literature, including BBSE, ACC, and the
Maximum Mean Discrepancy-based method, and derive a common analysis in Chapter 3.

2.3.1 Distribution Matching
The unifications proposed by Firat and Bunse are based on what we will call distribution
matching.

In Section 2.2.3, we presented quantification as a parametric model (2.18). The goal
of distribution matching is to find the distribution Pα that is closest to Q with respect to
any discrepancy or divergence. To do this, we define a feature mapping Φ: M(X ) 7→ Z
that maps any distribution on X to any space Z and a distance D that has all the desired
properties (minimal for α∗, convex, fast to compute and minimise) to solve:

min
α∈∆c

D(Φ(Pα),Φ(Q)). (2.31)

Let us see how we can rewrite some of the previous methods as (2.31).

Adjusted Classify and Count Let us assume that the classifier f is not prob-
abilistic. In this case, let ϕ : x 7→ (1{f(x) = i})ci=1, and for a distribution P, denote
Φ(P) := EP[ϕ(X)]. Then, Φ(P(x|y = i))j = P(f(x) = j|y = i), which implies that∑c

i=1 αiΦ(P(x|y = i)) = αCŷ|y.
The Distribution Matching method associated with this function Φ and the L2 norm

corresponds to the formulation (2.9) of Adjusted Classify and Count.
The method proposed by Azizzadenesheli et al. [4] is a variant of BBSE where the function

D is the L2 norm and a penalisation term, so this method can also be cast as a distribution
matching procedure.

Forman’s threshold policy The threshold policy consists in applying to the source
an ACC with a classifier f , whose threshold has been optimised according to a criterion
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(see Figure 2.3). The threshold policy is therefore a distribution matching method with an
ante-hoc procedure, which hypothetically gives a worse classifier but a better quantifier.

Probabilistic Adjusted Classify and count This setting is the same as the one we
described above, except that the function Φ is now the output of a soft classifier: ϕ(x) = f(x).

Hellinger distance x and y The methods proposed by González-Castro et al. [59] use
as their names indicate, the Hellinger distance between either histograms of the outputs of
the classifier (HDy) or histograms of the data directly (HDx). Thus, they are distribution
matching methods with D the Hellinger distance and Φ the histogram function of the classifier
outputs or the data.

Dys proposed by Maletzke et al. [79] is a variation of HDy where they change the distance
function D.

Kernel Density The methods proposed by Moreo et al. [85] embed the data using a
density estimation of the output of a classier f . The authors proposed to use 3 distances
D: the Hellinger distance, the Cauchy-Schwarz divergence and the KL divergence. However,
the framework can be generalised by using any distance D, such as a f -divergence or the L2

norm.

SORD The SORD method, also proposed by Maletzke, consists, as we have explained, in
minimising the Wasserstein distance between the outputs of the classifier, see (2.17). This
directly gives us our functions Φ and D.

Kullback–Leibler divergence We presented MLLS (Section 2.2.3) as to find the
parameter α that maximise the likelihood. It is a well-known fact in statistics that maximising
the likelihood of a model is equivalent to minimising the Kullback-Leibler divergence between
the real distribution and the probability defined by the parameter α.
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KL(Q,Pα) =

∫
X
QX(x) log

(
QX(x)

Pα(x)

)
dx

=

∫
X
QX(x) log (QX(x)) dx

C1

−
∫
X
QX(x) log (Pα(x)) dx

= C1 −
∫
X
QX(x) log

(
c∑

i=1

αiP(x|y = i)

)
dx

= C1 −
∫
X
QX(x) log

(
c∑

i=1

αi
P(y = i|x)PX(x)

PY (i)

)
dx

= C1 − C ′
1 −

∫
X
QX(x) log

(
c∑

i=1

αi
P(y = i|x)

PY (i)

)
dx.

Replacing Q with the empirical distribution of the target sample yields Equation (2.19) up
to additive term. A similar calculation using the parametrisation MW yields Equation (2.20)
up to additive term.

ReadMe ReadMe [69] was specifically design for text categorisation (2.24). The embed-
ding function Φ is a vector of dimension K, where Φ(x)i = 1 if the i-th word of a dictionary
is present in the document x and the function D is as in BBSE the L2 norm.

Maximum Mean Discrepancy The methods proposed by Iyer et al. [70] and Kawakubo
et al. [73] both used the kernel methods (the Gaussian kernel and the energy kernel, respec-
tively) to perform quantification. We extend their methods to any kernel, including kernels
obtained with Random Fourier Features in Chapter 3.

The function Φ associated with these methods is the kernel mean embedding and the
distance is the Hilbert distance of the corresponding RKHS.

Regularised Wasserstein distance Freulon et al. [49] proposed to use a regularised
Wasserstein distance directly on the data, as opposed to SORD which did it on the outputs
of a classifier and with the classical Wasserstein distance. In this case, D is the regularised
Wasserstein distance and Φ is the identity function.

If we do the alternative described by Freulon et al., using the Sinkhorn divergence in-
stead of the regularised Wasserstein distance, then we are again in the distribution matching
framework, where D is the Sinkhorn divergence [43].
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2.3.2 Distribution Feature Matching

In Chapter 3 we study a general framework that we call Distribution Feature Matching (DFM).
DFM is a special case of Distribution Matching where the distance function is an Hilbertian
norm and the embedding function Φ is of the form Φ(P) = EP[Φ(x)]. This method unites
under the same analysis the Maximum Mean Discrepancy methods of [70] and [73], the
methods that use the confusion matrix of a classifier, the method of Hopkins et al. for text
classification and a variation of the method of Moreo et al. [85], who propose to use a KDE
on the output of the classifier f if we choose D as L2 norm. Moreover, the error bounds
obtained are better than those known in the literature, namely those of Iyer [70] and Lipton
[77].

We provide theoretical guarantees on the estimation error of the proportions for all DFM
methods in Chapter 3. See Table 2.1 for an overview of the Distribution Matching framework.

Method Embedding function Φ Distance function D DFM
BBSE 1{f(x) = i} L2 Yes

Threshold policy 1{f(x) = i} L2 Yes
PACC f(x) L2 Yes
HDy Histogram of f(x) Hellinger distance No
HDx Histogram of x Hellinger distance No
Dys Histogram of f(x) Any distance No
Dys Histogram of f(x) L2 Yes

FMM cumsum of the cdf of f L1 No
SORD f(x) W2 No
KDEy KDE of f(x) Multiple Choice No
KDEy KDE of f(x) L2 Yes

ReadMe Special embedding L2 Yes
Kernel methods KME MMD Yes

Wasserstein Identity function Regularised W2 No
Sinkhorn Identity function Sinkhorn No

Table 2.1: Overview of the Distribution Matching framework.

With this restricted definition of Distribution Matching we were able to obtain theoretical
results on the convergence of the estimator. See Theorem 3.1.

2.3.3 Methods that do not fit the framework

Some of the methods we presented in Section 2.2 were not categorised as distribution match-
ing methods. Let us review these methods.
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Classify and Count Actually Classify and Count is a distribution matching method,
where Φ(P)i = EP[1{f(x) = i}] and D is the function D(a, b) = b. With these notations
(2.31) is no longer an optimisation problem because it is equal to Φ(QX(x)). We choose to
exclude classify and count from this category because it does not follow the “philosophy” of
Distribution matching, that is to say: find the distribution Pα in M that is the “closest” to
the true distribution Q where the definition of closest is given by the embedding Φ and the
distance function D.

Methods of section 2.2.4 These methods were designed to minimise a “quantification”
criterion rather than a “classification” criterion. This ante-hoc procedure produces worse
classifiers in the hope of having better quantifiers. To quantify, these methods use the
classifier and a classify and count procedure.

Deep Quantification Networks DQN learns to represent a distribution as a vectorial
representation that encapsulates both the source embeddings P(x|y = i) and the proportions
of the classes PY (i) of a given bag. Once this intermediate embedding has been learned, the
model outputs the probability using a fully connected layer, i.e. a linear classification and a
softmax.

We can not call this a distribution matching method because the intermediate embedding
Φ(QX(x)) will be no closer to Φ(Pα∗) than any other Pα.

Ensemble methods Methods that aggregate multiple quantifiers, from Section 2.2.6,
can not be cast as distribution matching, but the quantifiers used as an intermediate step
might be.

2.3.4 Comparison of BBSE and MLLS

Garg et al. [52] proposed a method that unifies BBSE and MLLS2. The perspective taken
by Garg and their co-authors is similar to distribution matching but more restricted to their
objective.

The idea is the same as with DFM: map each point of the dataset to some space, embed
each class by taking the mean and find the proportions by minimising a distance, but the
space on which they embed is more restricted than the general case, since it is a probabilistic
space.

In DFM we define Φ(x) as a mapping from the data space X to an Hilbert space H, while
in Garg et al., a point is associated with a distribution g(x) ∈ P(Z) in a space to be defined
as Z. They then define P(z|y = i) as

∫
X g(x)P(x|y = i)dx and Q(z) as

∫
X g(x)QX(x)dx.

2They called their method: generalized distribution matching, but note that this is not the
same as distribution matching and is in fact less general than DM.
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If we have a classifier we can take g = f because it defines a distribution over ∆c. P(z|y)
is now a matrix in Rc×c equal to the confusion matrix of the classifier while Q(z) is now a
vector equals to αcc the estimation of the proportions by classify and count (Section 2.2.1).

The choice of D then remains. If we use KL we obtain MLLS and if we use L2 we obtain
BBSE.

The difference between the two methods lies in the choice of distance but also, as they
pointed out, on the choice of calibration. The following theorem by Vaicenavicius et al. [123]
indicates that the confusion matrix is a calibration technique.

Theorem 2.4 (Vaicenavicius et al. [123]). For any function h, the function

f : x 7→ P(y|h(x)),

is a calibrated classifier.

In particular, the function f̄(x) = P(y| argmax f(x)) is a calibrated predictor, and this
vector can be estimated by the (argmax f(x))-th column of the confusion matrix.

To summarize, MLLS involves training a classifier on the source data, calibrating this
estimator using an explicit post-hoc method, and then minimizing quantification using the
KL distance. The BBSE method, on the other hand, involves training a classifier on the
source data and using the L2 distance while implicitly calibrating the classifier using the
confusion matrix. Garg and their co-authors propose a hybrid method that uses the estimator
calibrated by the confusion matrix but still uses the KL distance. This hybrid method, named
MLLS-CM (CM for Confusion Matrix), is experimentally shown to be inferior to MLLS while
being (roughly) equivalent to BBSE.

In summary, Garg et al. affirm that MLLS is better than BBSE not because of the
KL distance but because the calibration method using the confusion matrix is less effective
than other post-hoc methods. This was confirmed in their experiments as well as those of
Alexandari et al. [2] that show empirically that MLLS outperforms BBSE for a good choise
of calibration, namely Bias-Corrected Temperature Scaling (BCTS).

2.4 Evaluation of quantifiers
As with all learning methods, quantification algorithms need to be compared through experi-
mentation. The difficulty in evaluating them is that the estimation is not based on a single
data point, as in classification, but on a complete data set. Therefore, it requires access
not to a training set (the source) and a test set (the target) as in classification, but to a
collection of sources and targets, with each source/target pair having to satisfy the label
shift hypothesis (LS). Moreover, unlike the classical classification framework, where we can
measure the error of a classifier using the accuracy of the model, in quantification we have
to define a metric to compare α̂ and α.
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Two elements must be defined when designing an evaluation protocol: a metric D to
evaluate the error of a single estimate, and a set of data sets that satisfy the label shift
assumption (LS), either from real applications or generated.

In this section we only focus on the protocol for comparing quantifiers in direct application
(see Section 2.1.1), as the other application areas we have presented have their own evaluation
protocols. First we discuss the choice of metric, and then the data generation process.

2.4.1 Evaluation metrics

This section is a reinterpretation of the work of Sebastiani [104] (also chapter 3.1 of Learning
to quantify by Esuli et al. [32]). In their work, the authors propose an “axiomatic approach
to evaluation measures for quantification”, which consists in defining a set of properties (or
axioms) that a good measure D should satisfy. In this section we present the axioms proposed
by the author, discuss their validity, and show that these axioms are incompatible. In addition,
we discuss the way in which multiple results can be aggregated, a topic that is only hinted at
in his work.

Throughout this section we will refer to the measures as D and assume that we have two
vectors of proportions: α, α̂ ∈ ∆c. The true proportion is the vector α while the estimate is
the vector α̂.

Classical metrics used in Quantification.

Let us start by presenting the classical metrics used in the quantification literature. We refer
the reader to the work of Sebastiani [104] (Table 2) to find out which article has used which
metric.

Definition 2.3 (Absolute error AE).

AE(α, α̂) =
1

c

c∑
i=1

|αi − α̂i| =
1

c
∥α− α̂∥1.

Definition 2.4 (Relative Absolute error RAE).

RAE(α, α̂) =
1

c

c∑
i=1

|αi − α̂i|
αi

.

Definition 2.5 (Square error SQ).

AE(α, α̂) =
1

c

c∑
i=1

(αi − α̂i)
2 =

1

c
∥α− α̂∥22.
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Figure 2.10: This figure, inspired by that of Sebastiani [104] (Figure 1), shows the
distance between α on the x axis and α̂ on the y axis for a selection of metrics D.
Darker areas represent small errors.

Definition 2.6 (Discordance Ratio DR).

DR(α, α̂) = 1− 1

c

c∑
i=1

min(αi, α̂i)

max(αi, α̂i)

=
1

c

c∑
i=1

|αi − α̂i|
max(αi, α̂i)

.
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Definition 2.7 (Kullback-Leibler Divergence KL).

KL(α, α̂) =
c∑

i=1

αi log
αi

α̂i
.

Definition 2.8 (Pearson Divergence PD or χ2 divergence).

PD(α, α̂) =
1

c

c∑
i=1

(αi − α̂i)
2

α̂i
.

Definition 2.9 (Total Variation TV).

TV(α, α̂) = sup |αi − α̂i| = ∥α− α̂∥∞.

For reasons we will explain in the next section, it may be advantageous to have a metric
for which the error range, i.e. the worst error an estimate of the true proportions can make,
is bounded by a constant M . One way to achieve this is to “normalise” the metric D

by dividing D(α, α̂) by D(α, α̃), where α̃ is the worst possible estimate. We call this the
“perverse” estimate of α. This defines a new category of metrics called normalised metrics:

Definition 2.10 (Normalised Absolute error NAE).

NAE(α, α̂) =
AE(α, α̂)

max
α̃

AE(α, α̃)

=

∑c
i=1 |αi − α̂i|

2(1−min αi)
.

Definition 2.11 (Normalised Relative Absolute error NRAE).

NRAE(α, α̂) =
RAE(α, α̂)

max
α̃

RAE(α, α̃)

=

∑c
i=1 |αi − α̂i|/αi

c− 1 + 1−min αi
min αi

.

Definition 2.12 (Normalised Square error NSQ).

NSQ(α, α̂) =
SQ(α, α̂)

max
α̃

SQ(α, α̃)

=

∑c
i=1 |αi − α̂i|

(1−min αi)2 +
∑c

i=1 α
2
i −min α2

i

.

Since the perverse estimate of α gives an infinite error, we can not use the same strategy
to normalise the KL divergence. What has been proposed in the literature is to use the
sigmoid function.
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Definition 2.13 (Normalised Kullback-Leibler Divergence NKL).

NKL(α, α̂) = 2σ(KL(α, α̂))− 1.

with σ : x 7→ 1
1+exp−x , the sigmoid function.

Remark. Some of the metrics we define in this section are not defined if either α or α̂

has a zero coordinate. What has been proposed in the literature is to “smooth” the
proportion by a factor ε:

αε =
ε+ α∑c
i=1 ε+ αi

,

where ε ∼ 1/2n is taken in practice. The heuristic behind this value is that if α̂ = 0

it can either mean that the true proportions are zero or that the sample is too small to
have a data point from that label i.e. αi ≤ 1/n.

The axioms

We present the seven axioms with graphs to illustrate them. Some of these are only shown
for c = 2. In their original formulation they were shown for an arbitrary c ≥ 2, but it was
assumed that α was equal to α̂ at all but two coordinates. To keep the formulation simple
(and to be able to visualise it) we restrict the definition to two classes.

Moreover, the (IND) property implies that if a property presented for c = 2 is verified by
D, then it also satisfies the property in the general formulation.

Axiom 1. Identity of indiscernible (IoI).
For all proportions α, α̂ ∈ ∆c,

D(α, α̂) = 0 ⇐⇒ α = α̂.

Axiom 2. Non-negativity (NN).
For all proportions α, α̂ ∈ ∆c,

D(α, α̂) ≥ 0.

Axiom 3. Maximum (MAX).
There exists a value M ∈ [0,+∞[, such that for all proportions α ∈ ∆c, there exists a
“perverse” approximation α̃ := α̃(α) such that

D(α, α̃) = M, and ∀α̂ ∈ ∆c, D(α, α̂) ≤ M.

Axiom 4. Strict monotonicity (MON).
For all proportions α ∈ ∆2 and for all values t ∈ [−α1, α2] where αi denotes the i-th
coordinate of the vector α, let us write αt = (α1 + t, α2 − t). It holds:

t 7→D(α, αt) is decreasing on [−α1, 0],

t 7→D(α, αt) is increasing on [0, α2].
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For instance:

0 1

α−0.2,1

α−0.1,1

α1 α2

α−0.1,2

α−0.2,2

D(α, α−0.1) < D(α, α−0.2).

Axiom 5. Impartiality (IMP).
For all proportions α ∈ ∆2 and for all values t ∈ [0,min(α1, α2)], the approximation
αt = (α1 + t, α2 − t) ∈ ∆2 and the approximation α−t = (α1 − t, α2 + t) ∈ ∆2 yield the
same error:

0 1
α1 α2

α1 − t α2 − tα1 + t α2 + t

D(α, αt) = D(α, α−t).

Axiom 6. Relativity (REL) and Absoluteness (ABS).
For every proportions α, β ∈ ∆2, that satisfy α1 < β1 ≤ β2 < α2. Let us take t, such
that αt = (α1 + t, α2 − t) ∈ ∆2 and βt = (β1 + t, β2 − t) ∈ ∆2 two approximations. Then
it holds:

0 1
α1 α2β1 β2

α1 + t α2 − tβ2 − tβ1 + t

D(α, αt) > D(β, βt), (REL)

D(α, αt) = D(β, βt). (ABS)

Axiom 7. Independence (IND). Let us write C1 ⊂ {1, · · · , c} a subset of the classes.
For every proportions α ∈ ∆c, and every estimation α̂1, α̂2 ∈ ∆c, such that α̂1

i = α̂2
i

for every i ̸∈ C1. Then D(α, α̂1) ≤ D(α, α̂2) if and only if

D(αC1 , α̂
1
C1
) ≤ D(αC1 , α̂

2
C1
),

where αC1 ∈ ∆|C1| are the proportions restricted to C1. Same for α̂1
C1

and α̂2
C1

.

Let us break down these axioms. The properties (IoI) and (NN) imply that D is a
divergence but not a distance since D is not necessary symmetric and does not satisfy the
triangle inequality. We do not see any reason why we should impose the triangle inequality on
D and the symmetry is not useful since we are comparing a true distribution and an estimate,
so we are free to choose whether we want to compute D(α, α̂) or D(α̂, α).

Property (MON) means that “all other things being equal, a higher prediction error on
one class (obviously matched by a higher prediction error of opposite sign on another class)
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implies a higher quantification error as measured by D”. [104]. Property (IND), only implies
that we need to compare two estimates at the coordinates where they differ.

As we can see in Table 2.2, these four properties (IoI), (NN), (MON) and (IND) are
satisfied by all metrics commonly used in quantification. These are primary properties, and
we can not think of any cases where we would want a metric D that does not satisfy one of
these properties.

The discussion in the article [104] focuses mainly on the last four properties.
Property (IMP) states that an underestimation or an overestimation of the same absolute

value should be equally penalised. Property (REL) implies that making mistakes of the same
absolute value on small classes is worse than making mistakes on larger classes, whereas
(ABS) implies that the impact of errors is the same regardless of class size. There are certain
scenarios where (REL) is desirable, when we want to penalise errors on small classes more
severely. For instance, if we know in advance that the classes are highly unbalanced, such
as in a flow cytometry dataset. But there are also scenarios where (ABS) is desired. For
example, Sebastiani [104] presented a setting where we want to estimate the percentage of
passengers who will show up for a flight, where overestimating or underestimating by a certain
percentage would have the same cost to the airline, regardless of the true proportion of people
who do not show up. There is no compelling reason to use a metric that does not satisfy any
of these properties. However, in that scenario it is not clear if (IMP) is desirable.

Property (MAX) implies that the range of values does not depend on the true proportion
that we aim to estimate. This property is important in settings where we want to assess the
quality of a given quantifier on multiple samples, each characterized by its own true proportions
and its own number of classes. For instance, consider the absolute error (AE), i.e. the L1

norm divided by the number of classes. The error range of (AE) is [0, 2c (1−min αi)]. The
smallest range possible occurs when min αi is equal to 1

c , and in that case, the error range
is [0, 2c −

2
c2
]. The largest possible range occurs when min αi is equal to 0, and in that case,

the error range is [0, 2c ]. This is a problem if the number of classes is small; for c = 2, the
range changes from [0, 1/2] to [0, 1] depending on the true distribution.

Therefore, if we aggregate the error measured with (AE) by a mean or a median, the
results will be unreliable as an error of 1/2 ∈ [0, 1] for a given proportion is “better” than
an error of 1/2 ∈ [0, 1/2] on another. This issue is less problematic if the number of classes
is large; for instance, for c = 10, the range changes from [0, 0.18] to [0, 0.2], however if we
apply a mean on experiments with different numbers of classes, the results become even more
confusing.

After a close examination of all the metrics used in the literature, Sebastiani [104] found
that no metric satisfied all the properties at once3 The article concluded by suggesting that
“more research is needed to identify or synthesise a truly adequate such measure”. Unfor-
tunately, the main theorem we will establish in this section states that the seven axioms

3Note that (REL) and (ABS) are by definition mutually exclusive. When we say “satisfies all
properties at once”, we mean that it satisfies either (REL) or (ABS) and all the other properties.
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IoI NN MAX MON IMP REL ABS IND

AE Yes Yes No Yes Yes No Yes Yes
NAE Yes Yes Yes Yes Yes No No Yes
RAE Yes Yes No Yes Yes Yes No Yes

NRAE Yes Yes Yes Yes Yes No No Yes
SQ Yes Yes No Yes Yes No Yes Yes

NSQ Yes Yes Yes Yes Yes No No Yes
DR Yes Yes No Yes No No No Yes

KLD Yes Yes No Yes No No No Yes
NKLD Yes Yes Yes Yes No No No Yes

PD Yes Yes No Yes No No No Yes
TV Yes Yes No Yes Yes No Yes Yes

Table 2.2: Property of the metics as reported by Sebastiani [104], the proofs or
the counter-example can be found in the article. Note however that the Discor-
dance ratio (DR) does not check REL, contrary to what they announced. See
Proposition 2.1.

presented are mutually exclusive, leading to a context-dependent choice of metric.
To show this, we must first characterise for a metric D the set of “perverse estimates”

i.e. the worst possible estimations.

Lemma 2.2. If a function D satisfies (MON) and (IMP), then for given proportion
vector α ∈ ∆2 :

α̃i =

{
1 if i = argmin αi

0 else

is the perverse estimation of D.
If α1 = α2 both α̃ = (1, 0) and α̃ = (0, 1) are “perverse”.

Proof. Let us suppose without loss of generality that α1 < α2.
Let us write αt = (α1 + t, α2 − t), since α1 ≤ α2 : t ∈ [−α1, α2]. By definition of IMP
we have :

D(α, αt) = D(α, α−t),

using (MON), we conclude that D(α, αt) is maximal when |t| is maximal, i.e. t = α2. □

We can now state and prove the main theorem of this section: The axioms of the Se-
bastiani [104] are mutually exclusive, i.e. no function D can satisfy (IoI), (NN), (MON),
(MAX), (IMP), (IND), and (REL) or (ABS) at the same time.

Theorem 2.5 (Incompatibility of the axioms). Suppose that a metric D satisfies (MON)
and (IMP). Then it can not satisfy both (MAX) and (REL) or (MAX) and (ABS)
at the same time.
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Proof. Let us take α, β ∈ ∆2, that satisfy α1 < β1 ≤ β2 < α2, t ∈ [−α1, β2], αt =

(α1 + t, α2 − t) ∈ ∆2 and βt = (β1 + t, β2 − t) ∈ ∆2.

Let us take t = β2, by Lemma 2.2, βt is the perverse estimation of β and by MAX :
D(β, βt) = M .

1. (REL) is not possible because of (MAX) as D(α, αt) ≤ M .

2. (ABS) is not possible as αt is not the perverse estimation of α.

□

Theorem 2.5 establishes that the seven axioms presented are mutually exclusive, leading
to a context-dependent choice of metric. Note, however, that the property (MAX) is not
required if we compute the error on only one experiment. In other words, (MAX) is the only
property that is not relative to the metric itself, but is relative to the metric when we compare
results on different experiments. In a sense, this is a “global” or “aggregation” property, while
the other properties are “local”.

Therefore, we can argue that this “global” property is not as important as the other
properties. If we only do one experiment, the question does not arise. If we have several
experiments, we still can choose to aggregate the results using the arithmetic mean because
the problem posed by the lack of (MAX) may not be as important as [104] suggests. For
example, with the absolute error (AE), the range of error between two true distributions is
at worst twice as large and if the number of classes is high the range is almost null. Such
variations are not catastrophic for the arithmetic mean that we compute.

If we still want to mitigate this problem, we can rely on a different aggregating strategy
than the arithmetic mean. What we propose to overcome Theorem 2.5 is to take a metric
that satisfies all the desired properties (namely (REL)/(ABS) and (IMP)) depending on the
context, and to choose a clever aggregation strategy to overcome the absence of the (MAX)
property. However, as we shall see, there is no “free lunch” in the choice of metric, and our
aggregation strategy also introduces shortcomings that must be acknowledged when used.

Instead of computing the difference between the arithmetic means or the medians as it is
usually done in the literature, we can compute the ratio between the geometric means.

If we output two sets of errors ei ∈ [0, Ei] and e′i ∈ [0, Ei] then we can rewrite ei and
e′i as λiEi and λ′

iEi. with λi and λ′
i in [0, 1]. If we compare the two methods using the

arithmetic mean then
1

n

c∑
i=1

(ei − e′i) =
1

n

c∑
i=1

(λi − λ′
i)Ei,

which is a problem because the setting for which the range is high will count more on the
global error. But if we compute the geometric mean:

n
√∏n

i=1 ei
n
√∏n

i=1 e
′
i

= n

√√√√ n∏
i=1

λi

λ′
i

,
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then all problems and errors are equally considered. The major problem with this strategy is
that if only one error is zero then the geometric mean equals zero.

Alexandari et al. [2] suggested combining the aggregation strategy (in their case a median
rather than a geometric mean) with a paired Wilcoxon signed-rank test. If the p-value of the
test is greater than a fixed threshold (for example, 0.01), then one of the two methods is
significantly4 better than the other, but it does not say which is the best.

Additional remarks

Proposition 2.1. Discordance ratio does not satisfy REL, contrary to what Sebas-
tiani [104] announced.

Proof. Take, α = (0.25, 0.75), β = (0.5, 0.5) and t = 0.5.
In that case,

D(α, αt) = 1− 1

2

(
0.25

0.75
+

0.25

0.75

)
= 2/3,

D(β, βt) = 1− 1

2

(
0.5

1
+

0

0.5

)
= 3/4,

so D(α, αt) < D(β, βt), contradicting (REL). □

Sebastiani [104] introduced REL and ABS but a third option is possible:

Definition 2.14. Anti-Relativity (AREL).
For every proportions α, β ∈ ∆c, that satisfy α1 < β1 ≤ β2 < α2. Let us take t ∈
[−α1, β2] such that αt = (α1 + t, α2 − t) ∈ ∆c and βt = (β1 + t, β2 − t) ∈ ∆c two
approximations. Then it holds:

D(α, αt) < D(β, βt).

Several methods presented before satisfied this property.

4We note that the notion of “statistical significance” is widely criticised by statisticians, see
Amrhein et al. [3]
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Proposition 2.2. NAE, NRAE and NSQ satisfy AREL.

Proof. A direct computation shows that :

• NAE(α, αt) =
t
α2

,

• NRAE(α, αt) = 2t(1− α2),

• NSQ(α, αt) =
t
α2
2
.

We conclude, using α2 > β2. □

These 3 methods also satisfy MAX, so there are methods that satisfy all the axioms if we
replace REL/ABS with AREL. However, AREL means that we penalise more errors made
on the “middle class” than on the small and large classes, and we do not see any reason why
we would want to have this property in our metric.

2.4.2 Evaluation protocols

The easiest way to test a quantification method is to have multiple datasets from different
sources and perform quantification on them, as we would in a real situation where we want to
apply quantification. For example, in Chapters 3 and 4 we have access to a set of 29 patients,
so we can use each patient alternately as a source and as a target, creating 29× 28 sets on
which to compare the data. However, we need to make sure that the different distributions
satisfy the label shift assumption (LS) before testing the methods, which may turn out to
be wishful thinking on real data. What is more, we are limited by the number of samples
available to us and, finally, we do not have access to any form of hyper-parameter that would
allow us to control the difficulty of the task i.e. the “amount” of shift.

For these reasons, the community has discussed and proposed mechanisms to create bags
(i.e. subsamples) from one or more sources, where each bag has its own proportions α to be
estimated. This discussion can be linked to the splitting strategy we discuss for deep quan-
tification learning [95, 96], which requires a set of bags to train the model. Two approaches
have been proposed in the quantification literature: the Natural Prevalence Protocol (NPP),
introduced by Esuli et al. [38], and the Artificial Prevalence Protocol (APP), going back at
least to the seminal work of Saerens et al. [101]. The two approaches differ not in the nature
of the data used, which can be artificial or real, but in the mechanism for generating the bags.

The first framework (NPP) consists of taking a very large data set and dividing it into
uniformly drawn samples. This approach has the advantage of ensuring that the label shift
hypothesis is verified on the bags, but the proportions of the different bags do not differ
sufficiently and so we can not measure the robustness of the methods to ’hard’ changes in
the proportion distribution. Therefore, the method is now deprecated in the literature.
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The most used protocol in the literature is the artificial one (APP). The idea of this
approach is to control the amount of shift in the target distribution by either subsampling in a
dataset, with respect to given proportions α, a bag that will satisfy qY (·) = α or alternatively,
if the data is generated, generating a mixture with the given proportions. Different samples
can be generated, each characterised by different proportions, so the key element of APP is
the generation mechanism of the proportions α. When it was first introduced, the protocol
was presented in the two-class setting. If c = 2, we can simply do a grid-based exploration.
For each α ∈ [0, 1], a vector of proportions can be generated by taking (α, 1 − α). This is
particularly interesting because we can then plot the errors against α as a simple line graph.
The main disadvantage is that the resulting proportions are not “natural ”. For instance, if
the two classes are healthy cells and cancerous cells, it would be odd to have 95% cancerous
cells and only 5% healthy cells. However, this can easily be fixed by putting conditions on α.

The protocol can be generalised for c > 2 by creating a grid on the simplex ∆c, but this
becomes intractable as the number of classes increases. For LeQua 2022, Esuli et al. [34]
mitigated this problem by replacing the extensive grid-based exploration by sampling α uni-
formly on the simplex with the so-called Kraemer sampling algorithm. However, we still do
not have access to hyperparameters to control the difficulty of the problem.

In the label shift literature, authors have proposed another form of artificial protocol where
the proportions are also sampled from a distribution on the simplex but not the uniform one.
Lipton et al. [77] suggested using tweak-one shift. The idea is to assign a probability ρ to
one class and then distribute the remaining mass to the other classes, either equally across the
classes or according to the source proportions. The results are easy to plot, the proportions
are more “natural”, and we can play with two hyperparameters : ρ and the class taken. In
a sense, this approach is similar to the artificial prevalence proposed by Saerens in the two-
class setting. Another protocol, also used by Lipton but also by Alexandari et al. [2], is the
Dirichlet shift. The idea is to generate the proportions with the Dirichlet distribution of
parameter τβ, with β ∈ ∆c and τ > 0. For β we can either take the source proportions,
the vector [1/c, · · · , 1/c] or any prior knowledge on the target proportions. The parameter τ
does not change the mean of the Dirichlet distribution (E[D(τβ)] = β) but it changes the
variance, higher values of τ leading to proportions that are almost sparse, while small values
lead to proportions that are close to β, see Figure 2.11.

This approach has the advantage of having a hyperparameter to control the difficulty,
while ensuring that the average proportions are natural (thanks to β).

2.4.3 Conclusion on the evaluation protocols
As we have seen, the evaluation of protocols is a more complex issue in quantification than
in more classical machine learning problems.

For the choice of metric, we believe (as it was the case in [104]) that two metrics stand out:
the absolute error (AE) and the relative absolute error (RAE). The absolute error satisfied
the (ABS) property, so we want to use it in situations where the classes are balanced or in
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Figure 2.11: Ternary plot of Dirichlet distributions in dimension three, used to
sample the target proportions for τ = 1, 10, 50, 500. The proportions β are in
blue. When τ is small, the proportions are almost sparse (i.e. close to the border)
and when τ is large the proportions are more balanced around β.

situations where making errors on small classes does not need to be penalised more. On the
other hand, the relative absolute error must be used in situations where we want to penalise
errors on small classes more. These two measures do not satisfy the property (MAX), but
this problem can be mitigated as we have seen. This choice of metric is common in the
quantification literature, for example (RAE) is the metric used for the quantification data
challenges : LeQua2022 [35] and LeQua2024 [36].
For the evaluation protocol, we propose to use the Dirichlet shift for the reasons we have
explained. This choice is not common in the literature, the authors often prefer to use the
Kraemer sampling algorithm to sample uniformly on the simplex.





Chapter 3

Quantification with Distribution
Feature Matching

This chapter is a modified version of the article B. Dussap, G. Blanchard, BE. Chérief-
Abdellatif : Label Shift Quantification with Robustness Guarantees via Distribution Feature
Matching published in Machine Learning and Knowledge Discovery in Databases: Research
Track. ECML PKDD 2023. Lecture Notes in Computer Science, vol 14173. Springer, 2023.
[30]. The version contained in this manuscript includes new experiments, more detailed ex-
planations of the theorems, and a new introduction that is more in line with the content of
the other chapters.

In this chapter, we study our framework introduced in Section 2.3.2: Distribution Feature
Matching (DFM). We derive a general performance bound for DFM procedures under Label
Shift, which improves on previous bounds derived in particular cases in several key aspects.
We then extend this analysis by departing from the exact label shift hypothesis, in particular
in the case of open set label shift. These theoretical results are confirmed by numerical studies
on simulated and real datasets. We also present an efficient, scalable and robust version of
kernel-based DFM using Random Fourier Features.
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3.1 Introduction
As we discussed in Section 2.3.1 of the previous chapter, a significant proportion of quan-
tification methods can be recast under a common framework called Distribution Matching.
Since we have access to a sample of each source class and a sample of the target, and since
we know that under label shift the target is a mixture of the source class distributions, the
strategy is to search for the source mixture that is closest (in some sense to be defined) to
the target. A significant part of the quantification method proposed in the literature consists
in defining the right notion of distance to use.

However, this unified view of quantification can not be used to derive a common analysis,
because the different methods are too different. In this chapter, we introduce a new framework
called Distribution Feature Matching (DFM), which is less general than distribution matching
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and for which we can give a unifying theoretical analysis. This framework uses the mean
vectorisation, or mean embedding, introduced in Section 1.2.3. It generalises existing methods
such as Black-Box Shift Estimation (BBSE) [77], Kernel Mean Matching (KMM) [70, 133]
and its variant Energy Distance Matching [73].

We also introduce Random Fourier Feature Matching (RFFM), another special case of
KMM based on random Fourier features, introduced in Section 1.2.4. The idea of using RFFs
has been considered in numerous works to speed up the computation of kernel methods, but
to the best of our knowledge, it has never been exploited in general estimation or label shift
quantification problems.

Since the aim of this work is also to apply quantification methods on flow cytometry
data, and since such datasets are often “contaminated” by dead cells, doublets (i.e. two cells
that are hit together when they pass in front of the laser), or simply other types of cells that
are not labelled in the current experiment, we want methods that are robust to this kind of
contamination.

To this end, we introduce soft-DFM, an extension of DFM and we study the robustness
of this procedure to contamination under open set label shift.

Notations

From a formal point of view, consider a covariate space X , typically a subset of Rd, and
a label space Y = [c] := {1, . . . , c}. We define the two source and target domains as
different probability distributions over the covariate-label space pair X × Y. The target
label distribution is denoted α∗ = (α∗

i )
c
i=1 while each class-i conditional target distribution

is denoted Qi. Similarly, the source label distribution is denoted β∗ = (β∗
i )

c
i=1 while each

class-i conditional source distribution is denoted Pi. We will consider the label shift setting :

∀i = 1, . . . , c , Pi = Qi, (LS)

and the open set label shift setting which involves the contamination of the target by a new
class. We assume that the target domain is X × Ỹ, with Ỹ = {0, . . . , c} and that the label
shift hypothesis is still verified for the class {1, . . . , c}:

Q =
c∑

i=1

α∗
iQi + α∗

0Q0 (OSLS)

∀i = 1, . . . , c , Pi = Qi.

The distribution Q0 is seen as a noise or a contamination, for which we have no prior knowledge
nor sample. Therefore, our objective in this contaminated scenario is to be robust to a large
class of noise distributions. In Section 3.3.3, we will give insight on the kind of contamination
we can be robust to.

In both settings, we suppose a source dataset {(xj , yj)}j∈[n] ∈ (X × Y)n and a target
dataset {xn+j}j∈[m] ∈ Xm are given. All data points from the source (respectively the target)
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dataset are independently sampled from the source (resp. the target) domain. We have access
to the source labels yj but not to the target labels which are not observed. We denote by
P̂i :=

∑
j∈[n]:yj=i δxj (·)/ni the empirical source class-i conditional distribution, where δxj

denotes the Dirac measure at point xj and ni the number of instances labeled i in the source
dataset. Note that n1+. . .+nc = n. In the same manner, we denote Q̂ :=

∑
j∈[m] δxn+j (·)/m

the empirical target distribution. We finally denote by β̃ the empirical proportions in the source
dataset, i.e. β̃i := ni/n.

3.2 Distribution Feature Matching
Let us present our general framework, Distribution Feature Matching or DFM.

Definition 3.1 (Distribution Feature Matching). Let Φ : X → F be a fixed feature
mapping from X into a Hilbert space F (possibly F = RD). Suppose we can extend the
mapping Φ to probability distributions on X by taking expectation, i.e. Φ: P 7→ Φ(P) :=
EX∼P[Φ(X)] ∈ F .

We call Distribution Feature Matching (DFM) any estimation procedure that can be
formulated as the minimiser of the following problem:

α̂ = argmin
α∈∆c

∥∥∥∥∥
c∑

i=1

αiΦ(P̂i)− Φ(Q̂)

∥∥∥∥∥
2

F

(P)

where ∆c is the (c− 1)-dimensional simplex.

In the contamination setting, we aim at finding the proportions of the non-noise classes
of the target. As these proportions do not sum to one, the “hard” condition

∑
i αi = 1 is

no longer needed. One way to overcome this is to introduce a fictitious “dummy” class in
the source that formally has a vectorisation equal to 0 (note that adding a dummy class is a
computational and theoretical convenience; we do not require to have a real distribution P0

that maps to 0 in the feature space for the results to hold). If we write Φ(P̂0) := 0 one can
see that:

argmin
α∈∆c+1

∥∥∥∥∥
c∑

i=0

αiΦ(P̂i)− Φ(Q̂)

∥∥∥∥∥
2

F

= argmin
α∈int(∆c)

∥∥∥∥∥
c∑

i=1

αiΦ(P̂i)− Φ(Q̂)

∥∥∥∥∥
2

F

, (P2)

where int(∆c) := {x ∈ Rc : x ≥ 0,
∑

xi ≤ 1}. A procedure that solves P2 will be called
soft-DFM.

In Section 3.3, we will present theoretical results, in the classical label shift hypothesis
(LS), for DFM methods under an identifiability and boundedness assumption.

In Section 3.3.3, we will show a general result for (“hard”) DFM methods when the
label shift hypothesis is not verified. As a corollary of these bounds we will directly obtain
corresponding guarantees for the soft-DFM methods.
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In the remainder of this section, we will show the link between DFM and other classical
label shift quantification algorithms. However, any black-box feature mapping will be suitable
for the results of Section 3.3.

3.2.1 Kernel Mean Matching for Label Shift

Iyer et al. [70] used Kernel Mean embedding (KME) as their mapping. We refer the reader
to Muandet et al. [87] for a survey on KME. We briefly recall that for any symmetric and
semidefinite positive kernel k defined on X , one can associate a unique Hilbert space denoted
Hk, or simply H when there is no ambiguity, and a feature map Φ : X → H such that
⟨Φ(x),Φ(y)⟩ = k(x, y).

This mapping can be extended to the space of distributions by taking expectations, which
constitutes the principle of KME. Note that it is sufficient to have EP[

√
k(X,X)] ≤ ∞ to

ensure the existence of Φ(P), see Smola et al. [109]. An important property of this mapping
is that, even if we do not have direct access to the mapping as it is an element of the infinite-
dimensional Hilbert space H, we still can compute scalar products between mappings using
the so-called kernel trick :

⟨Φ(P),Φ(Q)⟩H = E(X,Y )∼P⊗Q[k(X,Y )],

which provides a way to find an explicit solution of Equations (P) and (P2) in practice.
For any kernel k, the function DΦ(P,Q) = ∥Φ(P)−Φ(Q)∥H is a pseudo-distance on the

space of measures on X , called the Maximum Mean Discrepancy (MMD) [61]. DΦ will be
a distance if and only if the mapping Φ is injective. Kernel that satisfy this assumption, for
instance the Gaussian kernel k(x, y) = exp

(
−∥x−y∥2

2σ

)
, and their corresponding RKHS, are

said to be characteristic.
In the paper that introduced MMD-based technique for quantification under label shift,

Iyer et al. [70] did not properly named their method. However, in the closely-related setting of
classification under covariate-shift, Gretton et al. [63] also introduced a MMD-based technique
similar to the one we presented here and called it Kernel Mean Matching (KMM). This is the
name we will use in the latter.

3.2.2 Energy Distance

Kawakubo et al. [73] proposed to used the energy distance to do quantification. The energy
distance is defined as a weighted L2 distance between the characteristic functions of the two
distributions but can be equivalently expressed as:

EnergyDistance(P,Q) = 2EP,Q
[
∥X − Y ∥

]
− EP,P

[∥∥X −X ′∥∥]− EQ,Q
[∥∥Y − Y ′∥∥].
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Proposition 3.1. The EnergyDistance is a particual case of MMD, with the so-called
Energy kernel:

k(x, y) = ∥x∥+ ∥y∥ − ∥x− y∥.

Proof. One important property of MMD is that it can be represented using the associated
kernel k as

MMD2(P,Q) = EP,P
[
k(X,X ′)

]
+ EQ,Q

[
k(Y, Y ′)

]
− 2EP,Q[k(X,Y )]. (3.1)

Now if we plug the definition of the Energy kernel in 3.1, we obtain:

EP,P
[
k(X,X ′)

]
= 2EP

[
∥X∥

]
− EP,P

[∥∥X −X ′∥∥]
EQ,Q

[
k(Y, Y ′)

]
= 2EQ

[
∥Y ∥

]
− EQ,Q

[∥∥Y − Y ′∥∥]
EP,Q[k(X,Y )] = EP

[
∥X∥

]
+ EQ

[
∥Y ∥

]
− EP,Q

[
∥X − Y ∥

]
MMD2(P,Q) = 2EP,Q

[
∥X − Y ∥

]
− EP,P

[∥∥X −X ′∥∥]− EQ,Q
[∥∥Y − Y ′∥∥].

= EnergyDistance(P,Q)

The fact that k(x, y) = ∥x∥ + ∥y∥ − ∥x − y∥ is indeed a reproducing kernel can be
found in [105]. □

As a result, Kawakubo’s method is, in fact, a particular example of kernel mean matching
and therefore of distribution feature matching. This method has the convenient advantage
of not depending on hyperparameters to be optimized, as is the case with the bandwidth σ

in the Gaussian Kernel.

3.2.3 BBSE as Distribution feature matching

Black-Box Shift Estimation (BBSE) or Adjusted Classify and Count (ACC), is a method using
the output of a black-box classifier f to estimate the proportions in the target. To take into
account the bias of the training data (i.e. the source) Lipton et al. [77] used the confusion
matrix.

To understand how Black-Box Shift Estimation can be cast as a Distribution Feature
Matching procedure, we start from its original formulation, presented in Equation (2.5), as
seeking the vector of proportions α that satisfies α̂cc = Cŷ|yα, where Cŷ|y is the estimated
conditional confusion matrix defined as (Cŷ|y)ij = 1

ni

∑
1{f(xl) = i and yl = j} and α̂cc

is the classify and count estimator, i.e. the empirical mean of the observed outputs of the
black-box classifier f on the target data, (α̂cc)i =

1
n

∑
l 1{f(xl) = i}. The BBSE estimate

is then α̂ = Cŷ|y
−1α̂cc (Cŷ|y is explicitly assumed invertible by Lipton et al. [77]).
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Proposition 3.2. The BBSE estimator based on the black-box classifier f is the same as
the solution of the DFM problem (P) using the feature mapping Φ(x) = (1{f(x) = i})i ∈
Rc, where the positivity constraint on α is dropped.

Proof. It is straightforward to check that for the mentioned feature mapping, Φ(P̂i) in the
DFM setting is exactly the i-th column of Cŷ|y in the BBSE notation, and Φ(Q̂) = α̂cc.
Hence the DFM objective in (P) rewrites to ∥αTCŷ|y − α̂cc∥2, and since Cŷ|y is assumed
invertible, in that setting the unconstrained solution is α̂ = C−1

ŷ|y α̂cc. Furthermore, the
sum-1 condition 1Tα = 1 (where 1 denotes a vector of ones of dimension c) is automat-
ically satisfied for the unconstrained solution: obviously it holds 1TCŷ|y = 1T , hence
1T = 1TC−1

ŷ|y , and 1T α̂cc = 1, so that 1TC−1
ŷ|y α̂cc = 1. □

In the experiments to come, we will use BBSE+, our modified version of BBSE including
the positivity constraint. The experimental results are slightly better for BBSE+. The reason
is that in many cases, due to the presence of small classes in the source and in the target, BBSE
returns negative proportions. When it does not output negative values, the two algorithms
are the same.

This version of BBSE (with the positive constraint) already existed in the literature, it
has been used for text content analysis by Hopkins et al. [69] and as a building block for
classification, in a domain adaptation setting more general than label shift by Tachet et
al. [114].

3.3 Theoretical guarantees
We now provide statistical guarantees for DFM and soft-DFM procedures. In particular, we
provide a high-probability upper bound on the Euclidean distance ∥α̂− α∗∥2, between the
estimated proportions α̂ and the true proportions α∗ under both label shift and open set label
shift. Moreover, the bounds are true if we replace the true proportions α∗ of the target by
the empirical proportions α̃ of the target sample. More precisely, if we note mi the number
of points of class i in the target sample, then α̃ = mi/m.

We make the following identifiability hypothesis on the mapping Φ:

c∑
i=1

βiΦ(Pi) = 0 ⇐⇒ βi = 0 ∀i = 1, . . . , c, (A1)

and
∃C > 0 : ∥Φ(x)∥F ≤ C for all x. (A2)

If we use KMM, the boundedness property is satisfied as soon as the kernel is bounded
(for instance the Gaussian kernel, or any continuous kernel on a compact space). For BBSE,
the boundedness is verified with C = 1.
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Concerning Condition A1, it is satisfied in the KMM case as long as the kernel is char-
acteristic and the distributions Pi are linearly independent (which is the minimal assumption
for the class proportions to be identifiable). These assumption have been previously used by
Iyer et al. [70] for KMM. Similarly, for BBSE, Lipton et al. [77] also assumed identifiability
and required that the expected classifier outputs for each class to be linearly independent.

We introduce the following notations and state our main theorem:

Definition 3.2. We denote Ĝ the Gram matrix, resp. M̂ the centered Gram matrix of
{Φ(P̂1), · · · ,Φ(P̂c)}. That is, Ĝij = ⟨Φ(P̂i),Φ(P̂j)⟩ and M̂ij = ⟨Φ(P̂i) − Φ,Φ(P̂j) − Φ⟩
with Φ = c−1

∑c
k=1Φ(P̂k). Furthermore, let ∆min be the second smallest eivenvalue of

M̂ and λmin the smallest eigenvalue of Ĝ. In particular, it holds ∆min ≥ λmin.

Theorem 3.1. If the label shift hypothesis (LS) holds, and if the mapping Φ satisfies
Assumptions (A1) and (A2), then for any δ ∈ (0, 1), with probability greater than 1− δ,
the solution α̂ of (P) satisfies:

∥α̂− α∗∥2 ≤
2CRc/δ√
∆min

(√
∥w∥1
n

+
1√
m

)
(3.2)

≤
2CRc/δ√
∆min

(
1√

mini ni
+

1√
m

)
, (3.3)

where Rx = 1 +
√

2 log(2x), w = α∗/β̃.
The same result holds when replacing α∗ by the (unobserved) vector of empirical

proportions α̃ in the target sample, both on the left-hand side and in the definition of w.
Moreover, under the same assumptions, the solution α̂soft of (P2) satisfies the same

bounds with ∆min replaced by λmin.

The proof can be found in Section 3.5.1.

The first inequality of the theorem, Equation (3.2), depends on the true proportions we
want to estimate α∗ in w. ∥w∥1 can be understood as an “amount of shift”. ∥w∥1 = c in
the best case scenario, i.e. when the empirical proportions are equal to the proportions we
want to estimate (i.e. no shift) or when we have the same number of points in each class of
the labelled data, indeed when β̃i = 1/c, we have ∥w∥1 =

∑c
i=1 α

∗
i /β̃i = c ×

∑c
i=1 α

∗
i = c

because α∗ ∈ ∆c.
To remove the dependence on the true proportions, we take the worst case scenario,

which is obtained when αi = 1 for the smallest β̃i and 0 for the others, i.e. when the class
for which we have the least information becomes the only class in the target. In this case we
obtain Equation (3.3).

The dependence in α∗ in the first equation is actually desirable. Indeed, in situations
where one of the classes i on the source domain is rare (for example, the cancer cells in a
flow cytometry sample), then the rate (mini ni)

−1/2 in Inequality (3.3) explodes, which is
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not the case of the rate
√

∥w∥1/n in Inequality (3.2) when the source and target proportions
are similar, as the weight vector w reflects the similarity between the source and target
distributions.

Remark. When Φ is a black-box classifier, the embeddings of the distribution are the
column of the confusion matrix, i.e. vectors in ∆c. According to Theorem 3.2 that we
present in Section 3.3.2, the confusion matrix that maximise ∆min is the identity.
We presented in Chapter 2 a line of research that trained a classifier to be a good
quantifier without being a good classifier. According to our study, for BBSE (or ACC as
we also called it in the first chapter), the best classifier to use for quantification is a good
classifier. This result was also pointed out by Tasche [117] for the Maximum Likelihood
Estimator, where he shows that the asymptotic variance of the quantifier is proportional
to the inverse of the mean squared error on the target. In other words, a better classifier
reduces the asymptotic variance of the quantifier.

3.3.1 Comparison to related literature
We compare our result to Theorem 1 of [70] (Kernel Mean Matching) and Theorem 3 of [77]
(BBSE ), which as we have mentioned earlier hold under the same assumptions as we make
here.

Concerning KMM, a comparison between our inequality (3.3) and Theorem 1 in [70]
shows that our bound is tighter than theirs, which is of leading order

c√
m

+
∑
i

1
√
ni

vs ours in
1√
m

+max
i

1
√
ni

up to logarithmic factors. Thus, Theorem 3.1 improves upon the previous upper bound by a
factor of c with respect to the term in m, and reduces the sum into a maximum regarding
the number of instances per class ni, which may also decrease the order of by factor c when
the classes are evenly distributed in the source dataset. Furthermore, Inequality (3.2) even
significantly improves over both Inequality (3.3) and Theorem 1 in [70]. Hence, our theorem
significantly improves the existing bound for KMM established by [70].

Similarly, our bound (3.2) applied to BBSE also improves Theorem 3 in [77]. In particular,
when both inequalities are formulated with the same probability level (for instance 1 − δ),
our bound for BBSE is tighter by a factor

√
c w.r.t. the term in m than the guarantee pro-

vided by [77]. Note however that contrary to our result and to Theorem 1 in [70], the bound
of [77] does not involve any empirical quantity that can be computed using the source dataset.

Another key component of the bounds is the second smallest eigenvalue ∆min of the
centered Gram matrix, which replaces the minimum singular value λmin of the Gram matrix
in the case of KMM (see Theorem 1 in [70]) and the smallest eigenvalue of the confusion
matrix divided by the infinite norm of the source proportions in the case of BBSE (see
Inequality (3) of Theorem 3 in [77]), and improves upon both of them.
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This improvement is particularly important when the two source classes are unbalanced.
For instance, in a two-class setting with a black-box classifier feature map and β∗ = (p, 1−p),
the theoretical version of ∆min is equal to 1 when the classifier is perfect and replaces the factor
that would be min

(
p

1−p ,
1−p
p

)
< 1 in the bound of [77]. When the classifier is not perfect

but both classes share the same classification accuracy a ∈ (1/2, 1), then ∆min = 2a − 1,
which strictly improves the factor of [77] except when both classes are equally balanced, in
which case both quantities are equal.

3.3.2 Criterion for the choice of feature mapping

A classical problem of kernel method that used the Gaussian kernel is the choice of bandwidth
σ. In our case the problem is more general, because we have to choose a feature map
Φ. The quantity ∆min (which is empirical) serves as a natural criterion for selecting the
hyperparameters of the feature map, because the dependence in our bound only appears in
∆min, which can then be maximized using the labelled training dataset.

To fully understand the nature of ∆min, we can interpret DFM as the projection of the
target embedding onto the convex hull of the source embeddings. Our estimation is then the
barycentric coordinate of the projection, see Figure 3.1. In contrast to λmin, ∆min can be
understood as a geometric property of this convex hull. Indeed, if we shift all the distribution
embeddings by the same vector b ∈ F , we obtain a new Gram matrix Ĝb and we can show
that ∆min(Ĝ) = ∆min(Ĝb), which is obviously not the case for λmin(Ĝ) and λmin(Ĝb).

To better understand this, let us state the following proposition:

Proposition 3.3. For any number of classes c, ∆min is equal to min
∥u∥2=1

1Tu=0

uT Ĝu.

The proof can be found in Section 3.5.4.

Corollary 3.1. For two classes, ∆min = 1
2

∥∥∥Φ(P̂1)− Φ(P̂2)
∥∥∥2.

Proof. In two dimensions, the conditions ∥x∥ = 1 and 1Tx = 0 can only be verified

for 2 points, x =
(√

1
2 ,−

√
1
2

)
and x =

(
−
√

1
2 ,
√

1
2

)
. If we compute xT Ĝx for these

two points we obtain : 1
2

∥∥∥Φ(P̂1)
∥∥∥2 −

〈
Φ(P̂1),Φ(P̂2)

〉
+ 1

2

∥∥∥Φ(P̂2)
∥∥∥2 which is equal to

1
2

∥∥∥Φ(P̂1)− Φ(P̂2)
∥∥∥2. □

From a geometric point of view, it is clear that the larger the convex hull (i.e. the line
connecting the two features in situations where there are two classes), the less the barycentric
coordinate will be affected by a small perturbation of the weights. From a statistical point of
view, if our mixture is composed of two very different distributions, it will be intuitively easier
to distinguish them in a new sample.
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Figure 3.1: One way to understand the DFM procedure is to view it as the pro-
jection of the target embedding onto the convex hull of the source embeddings. In
this example, we have two classes, with (α, 1 − α) = (0.4, 0.6). The points Φ(P̂1)
and Φ(P̂2) in red are known; these are the embeddings of the source. The points
Φ(Q̂1) and Φ(Q̂1) in blue are unknown, as we do not have access to the labels
in the target distribution, but we do know Φ(Q̂) in red. Equation P simplifies to
projecting the point Φ(Q̂) onto the convex hull of the sources (here, the dotted line
PC in red). The estimated proportions can be read from the distances between
PC and the source embeddings. Φ(P̂α) in red represents the embedding of the
source distribution reweighted by the true target proportions α, i.e. the point we
would have liked to have been projected onto in order to correctly estimate the
true proportions.
Due to the label shift hypothesis LS, we know that Φ(P̂i) and Φ(Q̂i) are close,
and we can bound their distance using Theorem A.1. The black circles represent
these distances.

Understanding ∆min is less intuitive when the number of classes is greater than 2, because
we do not have access to a closed-form formula as simple as the distance between the two
embeddings. We propose here an approximation of ∆min by a more easily understandable
quantity.

Definition 3.3. For any number of classes c and any vectors {b1, · · · , bc}, we define:

Γ(b1, · · · , bc) := min
(I1,I2)∈P2(c)

d2(CI1 , CI2),
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with the following:

P2(c) =
{
I1, I2 ⊂ {1, · · · , c}| |I1 ∩ I2| = 0, |I1 ∪ I2| = c, |I1| and |I2| > 0

}
CI =

∑
j∈I

λjbj | λ ∈ ∆|I|


d2(A,B) = inf

x∈A
y∈B

∥x− y∥22

In other words, Γ := Γ
(
Φ(P̂1) · · · ,Φ(P̂c)

)
is the minimal distance between the convex

hull of a subset of the source distribution and the convex hull of the complementary subset.
It represents how close we are from writing a barycenter as the mixture of two disjoint subset
of the sources. If Γ equals 0, then it means that the embeddings of the distributions (alter-
natively, the distributions themselves if the mapping is injective) are not linearly independent,
thus breaking assumption A1. On the other hand, if Γ is large, then it means not only that
all classes are far from each other, but every combination of classes is far from each other.
From both a geometrical and statistical point of view, we understand that a large Γ is suit-
able. In the case of two classes, we have Γ = 2∆min, but we do not have this equality for a
higher number of classes. What we can prove, however, is that ∆min is lower-bounded and
upper-bounded by Γ up to constants.

Theorem 3.2. For any number of classes c and any vectors {b1, · · · , bc}:

Kmax(c) Γ(b1, · · · , bc) ≥ ∆min(b1, · · · , bc) ≥
1

2
Γ(b1, · · · , bc), (3.4)

where Kmax(c) =
c
4 if c is even and (c+1)(c−1)

4c if c is odd.

Remark. If c = 2, Kmax(2) = 1/2 and ∆min = 1/2Γ as already proved in Corollary 3.1.

The proof can be found in Section 3.5.5.
The upper bound of the theorem is tight, indeed if we take bi as the canonical base of

Rc, then ∆min(b1, · · · , bc) = 1 and Γ(b1, · · · , bc) = K−1
max(c).

On the other hand, we did not found evidence yet that the lower bound was tight for
more than two classes.

3.3.3 Robustness to contamination
We now present a theoretical analysis of the robustness of the method with respect to the open
set label shift assumption. First, let us obtain a general result when label shift is not verified.
A naive approach would simply include the bias term ∥Φ(Pi)− Φ(Qi)∥F in the bound but we
propose here something more tight that put into light the robustness of soft-DFM to certain
types of contamination.
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Theorem 3.3. Denote by α̂ the minimiser of the DFM problem P. Denote V̄ the affine
span of the vectors Φ(Pi) and C the convex hull of those same vectors. Denote ΠV̄ and
ΠC the orthogonal resp. convex projection onto V̄ and C.
Suppose the same assumptions as in Theorem 3.1 hold, except for the exact label shift
assumption LS. Then, with probability greater than 1− δ :

∥α̂− α∗∥2 ≤
1√
∆min

(
3ϵn + εm +

√
2ϵnB

⊥ +B∥
)
, (3.5)

with:
ϵn = C

Rc/δ√
mini ni

; εm = C
R1/δ√
m

; (3.6)

B⊥ = B⊥(P,Q) =
√
∥Φ(Q)−ΠC(Φ(Q))∥F ;

B∥ = B∥(P,Q) = max
i

∥Φ(Pi)−ΠV̄ (Φ(Qi))∥F .

The proof can be found in Section 3.5.2.
Observe that the bound (3.5) shows robustness of a DFM procedure against perturbations

B⊥ that are “orthogonal” to the source space V̄ in feature space. In particular, consistency
(i.e. convergence of the bound to 0 as the sample sizes grow to infinity) is still granted
if Qi ̸= Pi but ΠV (Qi) = Pi. The procedure is robust with respect to perturbations in
the sources that are orthogonal to V̄ in feature space. Which type of perturbation of the
distributions will result in (close to) orthogonal shifts in feature space very much depends
on the feature mapping used. For BBSE, the feature space is of the same dimension as the
number of sources, thus under condition (A1), V̄ will coincide with E1, the affine space of
vectors summing to one. Since any distribution will be also mapped to E1, the orthogonal
component will always be 0. Thus, we expect no particular robustness property for BBSE
methods. For more general feature maps, such as kernel methods or any other vectorisations,
this orthogonality property remains to be investigated in general, but we will exhibit below a
favourable scenario for KMM in the Open Set Label Shift setting OSLS.

We now state a corollary in the OSLS scenario. To do so, we recall that, in this case, we
use the soft-DFM procedure P2. We are now in a particular case, where the only difference
between source and target is that the unknown noise class Q0 is formally replaced by the
dummy class having feature map equal to 0 in the source. Introduce V := Span{Φ(Pi), i ∈
[c]} (i.e. vector span rather than affine span for V̄ previously) and let ΠV be the orthogonal
projection on V .

Corollary 3.2. Denote by α̂soft the minimiser of the soft-DFM problem P2. Assume the
open set label shift hypothesis (OSLS) holds, and the mapping Φ satisfies Assumptions
(A1) and (A2). Then, with probability greater than 1− δ:

∥α̂soft − α∗∥2 ≤
1√
λmin

(
3ϵn + εm +

√
2α0 ϵn ∥Φ(Q0)∥F + ∥ΠV (Φ(Q0))∥F

)
,

with ϵn, εm defined as in (3.6).
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The proof can be found in Section 3.5.3.
In the particular case of KMM with a translation-invariant kernel k(x, y) = φ(x − y),

for any distributions P,P′ it holds ⟨Φ(P),Φ(P′)⟩ = E(X,Y )∼P⊗P′ [φ(X − Y )]. Thus, if φ is
rapidly decaying with distance (this is the case of the Gaussian kernel), the feature mappings
Φ(P) and Φ(P′) will be close to orthogonal (have a scalar product close to 0) whenever the
distributions P,P′ are well-separated. From this analysis, we anticipate that KMM with a
Gaussian kernel will be robust against contaminations distributions Q0 whose main mass is
far away from the source distributions, since its representation Φ(Q0) will then be close to
orthogonal to V in feature space.

3.4 Algorithms and applications
In this section, we will apply four methods on both synthetic and real datasets.

We choose to test three soft-DFM methods: KMM using the Energy Kernel [73], our
modified version of BBSE [77] and KMM using the Gaussian kernel [70]. We compare those
methods to Classify and Count (CC), presented in Section 2.2.1. KMM was enhanced with
Random Fourier Features to reduce the algorithmic complexity and therefore the computing
time.

The main objective of the experiments is, in view of our theoretical results of Section 3.3.3
and particularly Corollary 3.2, to test robustness properties of several DFM methods against
contamination of the the target dataset by different types of noise. Moreover, we want to
check if the soft version presented in Section 3.2 leads to improved results in some cases, and
will not hurt the results in the others.

All the computations were done on a computer equipped with a NVIDIA RTX A2000
Laptop.

3.4.1 Optimisation problem
Whatever the chosen mapping, solving (P) amounts to solving a Quadratic Programming
(QP) in dimension c. Indeed, we can rewrite the problem as:

minimise
1

2
αT Ĝα+ qTα (QP)

subject to α ⪰ 0c and 1T
c α = 1,

with q =
(
⟨Φ(P̂i),Φ(Q̂)⟩

)c
i=1

. This is a c-dimensional QP problem, which can be solved
efficiently using any available QP solver.

The computational bottleneck is the computation of the Gram matrix Ĝ and the vector
q. Using KMM directly leads to a complexity of O(n(n + m)), as computing q requires
evaluating the kernel for every pair of points from the source and the target and computing
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Ĝ requires evaluating the kernel for every pair of points between the source classes. Moreover,
one needs to have permanent access to the source distributions, as computing q requires both
the source and target raw dataset.

Due to such issues, kernel matrix approximations are often used in order to reduce the
computational cost of kernel methods [16, 100]. In our case we use the well-established
principle of Random Fourier Features (RFF) approximation [98] that we presented in the
Section 1.2.4.

In the experiments, we will call Random Fourier Features Matching (RFFM) the DFM
method that uses the RFF embedding as a feature mapping. RFFM can be used with any
translation invariant kernel as long as we are able to sample from its spectral distribution Λk.
We choose to stick to the classical Gaussian kernel: k(x, y) = exp

(
−∥x− y∥2/(2σ2)

)
where

the parameter σ is optimised using the criterion derived from (3.2) and Λk is the centred
Gaussian distribution with variance σ.

With this implementation, we can solve (P) for high-dimensional data with a very large
number of points in less than a second. For example, for two datasets containing 106 points
in dimension 5, (P) is solved in less than a second on a GPU, whereas it takes nearly 2
minutes when we use exact KMM.

Note that here RFFM is only used as a way to speed up the computation, and hence we
would obtain similar results with a classical KMM using the Gaussian kernel.

3.4.2 Experiments
We test two settings. The first one is completely artificial, we generate data using Gaussian
mixtures in RD. We contaminate the source distributions with a new Gaussian and we
control the difficulty of the task with a set of hyperparameters, including but not limited to
the percentage ε of noise in the target distribution.
The second one is a real scenario where we use cytometry data from Metafora. We have a
set of 29 patients and we use what is called a TBNK panel to extract four types of cells: T
cells, B cells, NK cells and Plasmocytes and we use the T cells as noise.

To evaluate the error of our estimates, we use 3 pieces of information as detailed in
Section 2.4, the geometric means of the absolute errors, the median rank of the method and
a one-tailed Wilcoxon test (with a threshold of 0.01) to determine whether two methods are
“significantly” equivalent.

The absolute errors between two vectors is defined as the L1 norm divided by the number
of classes. To clarify we multiply this by 100. Therefore an error of 3.0 can be understood
as, “the average approximation error of the class proportions is 3%”. One important remark
to keep in mind is that CC and BBSE output probability distribution on ∆c while the target
proportions of the non-noise classes live in int(∆c), in other word these method are intrinsically
biased by the percentage of noise ε. If we suppose that a classifier perfectly classify the non-
noise data in the target, then the absolute errors as defined above will be equals to ε/c×100.
This is the error we expect for a non robust method and we hope that soft-DFM will break
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this hard threshold.
This methodology is inspired on the one hand by the work of Sebastiani et al. [104] for

the choice of metric and on the other hand by the experiments carried out by Alexandari et
al. [2] as explained in Section 2.4.

Gaussian Mixture

In this setting, the source consists of a list of c Gaussian distributions: P1, · · · ,Pc in RD. The
mean of each Gaussian is located on the D-dimensional sphere of radius R. Each Gaussian
has its own covariance matrix, generated using a random orthonormal basis of RD and D

eigenvalues sampled from a uniform distribution on [0, d].
The proportions of the source are balanced, PY (i) = 1/c, and we sample n = 10000

points. The proportions of the target are sampled from a Dirichlet distribution: Dir(τ/c, · · · , τ/c),
where τ > 0, and we also sample m = 10000 points. The mean of the Dirichlet distribution
is PY (y) and the hyperparameter τ controls the variance of the distribution. A high τ will
lead to target proportions similar to those of the source, while small τ will lead to sparse
proportions (see Figure 2.11). Finally, the target is contaminated with a new Gaussian dis-
tribution. This contamination, denoted as Q0, is generated with the same procedure as for
the source. The same dimension D and range of eigenvalues d are used, but the radius of
the ball is set as ρ×R, where ρ > 0 is a new parameter that controls the distance between
the source distributions and the noise. The last parameter is the percentage of noise ϵ.

Therefore, we have a set of 7 hyperparameters that we can adjust:

1. The dimension of the data : D.

2. The number of classes : c.

3. The radius of the sphere : R.

4. The range of eigenvalues for the covariance matrices : d.

5. The parameter of the Dirichlet distribution used for the target proportions : τ .

6. The distance between the noise and the source : ρ.

7. The percentage of noise in the target : ε.

Throughout the experiments, the radius is fixed at R = 2, the range of eigenvalues at
d = 1, the variance of the Dirichlet distribution at τ = 50 and the number of classes taken at
c = 5. The dimensions taken are D = 2, D = 5 and D = 10. This results in three different
settings for which we can see the effect of the ε and ρ parameters.

We tested two settings, one with ρ = 1 and one with ρ = 10. In the first setting, the
noise is not different from the source distributions, while in the other case the noise is far
away from the source (see Figure 3.2). For CC and BBSE we use a logistic regression. For
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BBSE, we split the source distribution in two, one for training and the other to estimate the
confusion matrix of the classifier. For RFFM, we used 1000 random Fourier features and we
used the theoretical criterion for the choice of bandwidth σ, as explained in Section 3.3.2.
The results can be found in table 3.1 and table 3.2.

Figure 3.2: On both plots d = 2, c = 3, R = 2, D = 1 and ε = 0.25. With these
parameters the plum, orange and yellow sources are well separated. On the left
ρ = 3 and on the right ρ = 1. In the light of our theoretical analysis, we expect
robustness for RFFM for the left setting and no robustness for the right setting.

In the absence of noise contamination in the target, all methods give excellent results,
with a small advantage for RFFM, because the source distributions are easy to distinguish.
Obviously, the results deteriorate as the level of contamination increases but the level of de-
terioration depends on whether we are in the close (ρ = 1) or far (ρ = 10) setting.

In the close setting, no method is robust. In our setting, with ε = 0.2, 0.5, 0.7 the
“hard threshold” we discussed earlier are 4, 10 and 14. As we can see neither RFFM nor
EnergyQuantifier break this limits.

One the other hand when the new class is far away, RFFM significantly outperforms the
others. As discussed following Corollary 3.2, this is because when the contamination is far
away from the other classes, the Gaussian embedding of the noise distribution is close to
orthogonal to the source KMEs. This property does not hold when a class is added close
to the others and can therefore be more easily confounded. The results align well with our
theoretical analysis.

While Theorem 3.3 and Corollary 3.2 also hold for the Energy kernel as well (assuming
bounded data) or BBSE, we do not observe any robustness against noise. Again, this is in line
with the theoretical study for BBSE, for which we expected no robustness. Concerning the
Energy kernel, we surmise that the lack of robustness comes from the fact that k(x, y) can
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Percentage of
noise ϵ

Quantifier Number of classes = 5
dim = 2 dim = 5 dim = 10

0.0 CC 1.50 ; 3.0 0.78 ; 4.0 0.58 ; 4.0
0.0 BBSE 1.45 ; 3.0 0.45 ; 3.0 0.37 ; 2.0
0.0 RFFM 0.65 ; 1.0 0.30 ; 1.0 0.32 ; 2.0
0.0 EnergyQuantifier 1.21 ; 3.0 0.39 ; 2.0 0.38 ; 3.0
0.2 CC 4.94 ; 1.0 4.30 ; 2.0 4.06 ; 1.75
0.2 BBSE 8.54 ; 3.0 4.59 ; 2.0 4.22 ; 2.0
0.2 RFFM 5.09 ; 2.0 4.34 ; 2.0 4.49 ; 3.0
0.2 EnergyQuantifier 9.72 ; 4.0 7.40 ; 4.0 5.61 ; 4.0
0.5 CC 10.68 ; 1.0 10.06 ; 1.0 10.01 ; 1.0
0.5 BBSE 15.36 ; 3.0 11.36 ; 3.0 10.56 ; 2.0
0.5 RFFM 9.76 ; 2.0 10.68 ; 2.0 11.34 ; 3.0
0.5 EnergyQuantifier 15.68 ; 3.5 14.94 ; 4.0 13.05 ; 4.0
0.7 CC 14.33 ; 2.0 14.03 ; 1.0 14.00 ; 2.0
0.7 BBSE 17.85 ; 3.0 15.49 ; 3.0 14.39 ; 2.5
0.7 RFFM 12.82 ; 1.0 14.39 ; 2.0 14.43 ; 2.5
0.7 EnergyQuantifier 18.29 ; 4.0 16.80 ; 4.0 15.65 ; 4.0

Table 3.1: Gaussian Mixture: Comparison of CC, BBSE, RFFM and
EnergyQuantifier when ρ = 1 (close setting). The value before the semicolon
is the geometric mean of the absolute error (multiplied by 100 for clarity) over 50
repetitions. Value after the semicolon is the median rank of a method relative
to the other method in the same setting (same dimension, number of classes and
percentage of noise). A bold value in a group is not significantly different from
the best-performing method in the group (also in bold), as measured by a paired
Wilcoxon test at p < 0.01.
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Percentage of
noise ϵ

Quantifier Number of classes = 5
dim = 2 dim = 5 dim = 10

0.0 CC 1.50 ; 3.0 0.78 ; 4.0 0.58 ; 4.0
0.0 BBSE 1.45 ; 3.0 0.45 ; 3.0 0.37 ; 2.0
0.0 RFFM 0.65 ; 1.0 0.30 ; 1.0 0.32 ; 2.0
0.0 EnergyQuantifier 1.21 ; 3.0 0.39 ; 2.0 0.38 ; 3.0
0.2 CC 5.23 ; 2.0 4.59 ; 2.0 4.41 ; 2.0
0.2 BBSE 9.90 ; 3.0 5.93 ; 3.0 5.36 ; 3.0
0.2 RFFM 1.17 ; 1.0 0.69 ; 1.0 0.70 ; 1.0
0.2 EnergyQuantifier 13.83 ; 4.0 12.43 ; 4.0 9.43 ; 4.0
0.5 CC 10.87 ; 2.0 10.34 ; 2.0 10.25 ; 2.0
0.5 BBSE 17.42 ; 3.0 14.77 ; 3.0 13.53 ; 3.0
0.5 RFFM 2.19 ; 1.0 1.66 ; 1.0 1.81 ; 1.0
0.5 EnergyQuantifier 19.99 ; 4.0 18.83 ; 4.0 17.14 ; 4.0
0.7 CC 14.47 ; 2.0 14.22 ; 2.0 14.16 ; 2.0
0.7 BBSE 19.78 ; 3.0 18.41 ; 3.0 17.93 ; 3.0
0.7 RFFM 2.54 ; 1.0 2.13 ; 1.0 2.62 ; 1.0
0.7 EnergyQuantifier 20.65 ; 4.0 19.93 ; 4.0 19.32 ; 4.0

Table 3.2: Gaussian Mixture: Comparison of CC, BBSE, RFFM and
EnergyQuantifier when ρ = 10 (far setting). The value before the semicolon
is the geometric mean of the absolute error (multiplied by 100 for clarity) over
50 repetitions. Value after the semicolon is the median rank of a method relative
to the other method in the same setting (same dimension, number of classes and
percentage of noise). A bold value in a group is not significantly different from
the best-performing method in the group (also in bold), as measured by a paired
Wilcoxon test at p < 0.01.
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take large values even when ∥x− y∥ is large, hence near-orthogonality of the noise distribution
to the source does not hold in the corresponding feature space, in contrast to the Gaussian
kernel.

Flow Cytometry

In this setting we use flow cytometry data from Metafora. For each patient we have access
to four cell types: T cells, B cells, NK cells and plasmocytes. This dataset is a subset of a
larger dataset that we present in detail in Chapter 5.

To perform quantification, we propose an APP approach with a Dirichlet shift as described
in Section 2.4, where we remove all T cells to use them as noise. We choose to use T cells
as noise because they are the most abundant cells in the sample, see Figure 3.3.

For each patient, we split the data set in half, using the first half as the source and
resampling (with replacement) the other half so that the target proportions are α ∼ D(τβ),
where τ is a hyperparameter controlling the amount of shift and β is the proportions of the
source. In Figure 3.4 we show the target proportions obtained for τ = 10 and τ = 500, the
two values we chose in our experiments. We repeat the process 50 times for each patient,
each ρ and each percentage of noise ε.

Percentage of
noise ϵ

Quantifier Amount of shift
ρ = 10 ρ = 500

0.0 CC 0.21 ; 2.0 0.21 ; 2.0
0.0 BBSE 0.17 ; 2.0 0.17 ; 2.0
0.0 RFFM 0.25 ; 2.0 0.23 ; 2.0
0.1 CC 3.53 ; 2.0 3.52 ; 2.0
0.1 BBSE 3.57 ; 3.0 3.57 ; 3.0
0.1 RFFM 1.55 ; 1.0 1.54 ; 1.0
0.2 CC 6.86 ; 2.0 6.85 ; 2.0
0.2 BBSE 7.08 ; 3.0 7.08 ; 3.0
0.2 RFFM 2.97 ; 1.0 2.97 ; 1.0
0.3 CC 10.18 ; 2.0 10.17 ; 2.0
0.3 BBSE 10.59 ; 3.0 10.60 ; 3.0
0.3 RFFM 4.40 ; 1.0 4.42 ; 1.0

Table 3.3: Flow Cytometry: Comparison of CC, BBSE and RFFM. The
value before the semicolon is the geometric mean of the absolute error (multiplied
by 100 for clarity) over 50 repetitions. Value after the semicolon is the median
rank of a method relative to the other method in the same setting (same dimen-
sion, number of classes and percentage of noise). A bold value in a group is not
significantly different from the best-performing method in the group (also in bold),
as measured by a paired Wilcoxon test at p < 0.01.
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Figure 3.3: Number of cells for each patient. The patients are numbered from 1 to
46, but we discarded 17 of them because we did not have access to all the labels.

Figure 3.4: We show the source proportions as orange dots and the target propor-
tions as purple crosses. For each repetition, the source proportions do not change
(so there are only 29 orange dots), but the target proportions are sampled by a
Dirichlet distribution centred on the source proportions. We draw a line between
a target and its corresponding source. On the left we see the case τ = 10 (higher
variance) and on the right τ = 500 (lower variance). Note that we only show 10
repetitions here for clarity.
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The results can be found in the table 3.3. As we can see RFFM is robust to contami-
nation of the samples by T cells not as robust as it was in the synthetic but robust enough
to outperform the other methods and break the “hard threshold”. This suggests that the
embedding obtained using RFF, have interesting properties that we will use in Chapter 5 for
cells identification. Note that the parameter ρ that control the amount of shift has no impact
on the results, which is in line with the theoretical work. As we said, when we have the same
number of points in each class of the labelled data as it is the case here, we are in the best
case scenario and the bound (3.2) is minimal whatever the choice of proportions α∗ (or α̃).
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3.5 Proofs

3.5.1 Proof of Theorem 3.1.
The building block used in the proof of the theorem is a vector norm concentration inequality
in Hilbert spaces. More precisely, in this chapter, we use a Hoeffding-based inequality. This is
an old result that has appeared in different versions in the literature. Appendix A is devoted
to such results and contains a history of this argument as it has been used in the Kernel Mean
Embedding literature, as well as a self-contained proof (See Theorem A.1).

We now turn to the proof of Theorem 3.1.

Proof. Let α ∈ ∆c be fixed. Later we will consider the choices α = α∗ or α = α̃ (the
population resp. empirical class proportions in the target domain), and will specify this
when needed, but a large part of the argument holds for any α.

Given a feature map Φ, let us use the notation Ĝ, introduce in Definition 3.2, for the
gram matrix of the empirical source embedding. Let us note DΦ the function defined
by DΦ(P1,P2) = ∥Φ(P1)− Φ(P2)∥. Note that DΦ will be a distance if and only if the
mapping Φ is injective and will be a pseudo-distance otherwise.

It holds:

DΦ

(
c∑

i=1

α̂iP̂i,
c∑

i=1

αiP̂i

)2

=

∥∥∥∥∥
c∑

i=1

α̂iΦ(P̂i)−
c∑

i=1

αiΦ(P̂i)

∥∥∥∥∥
2

=

∥∥∥∥∥
c∑

i=1

(α̂i − αi)Φ(P̂i)

∥∥∥∥∥
2

= (α̂− α) Ĝ (α̂− α)

(†)
≥

 min
∥u∥2=1

1Tu=0

uT Ĝu

 ∥α̂− α∥2

(‡)
= ∆min ∥α̂− α∥2,

with equality (‡) proven in Proposition 3.3. For (†), note that we could have written

≥
(

min
∥u∥=1

uT Ĝu

)
∥α̂− α∥2, i.e. the definition of the smallest eigenvalue of the empirical

gram matrix Ĝ, but since
∑c

i=1(α̂i − αi) = 0, we can “add” the condition 1⊤u = 0 to
the definition of the smallest eigenvalue.

Thus in order to bound ∥α̂− α∥ we have to upper-bound: DΦ

(∑c
i=1 α̂iP̂i,

∑c
i=1 αiP̂i

)
.

By the triangle inequality, this is upper-bounded by DΦ

(∑c
i=1 α̂iP̂i, Q̂

)
+DΦ

(
Q̂,
∑c

i=1 αiP̂i

)
.

By definition, α̂ is the minimiser of DΦ

(∑c
i=1 γiP̂i, Q̂

)
for γ ∈ ∆c, hence we have
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DΦ

(∑c
i=1 α̂iP̂i, Q̂

)
≤ DΦ

(∑c
i=1 αiP̂i, Q̂

)
. Hence, we can upper-bound the quantity by

2DΦ

(∑c
i=1 αiP̂i, Q̂

)
.

Using the triangle inequality once again, we can upper bound DΦ

(∑c
i=1 αiP̂i, Q̂

)
by

:

DΦ

(
c∑

i=1

αiP̂i,
c∑

i=1

αiPi

)
+DΦ

(
c∑

i=1

αiPi, Q̂

)
. (3.7)

Using Theorem A.1 and the union bound, it holds with probability greater than
1− δ/2:

DΦ

(
c∑

i=1

αiP̂i,
c∑

i=1

αiPi

)
≤

c∑
i=1

αiDΦ

(
P̂i,Pi

)
≤

c∑
i=1

αiC
1 +

√
2 log (2c/δ)
√
ni

= CRc/δ

c∑
i=1

αi√
ni

, (3.8)

with Rx = 1 +
√
2 log 2x.

Since ni = nβ̃i, it holds
∑c

i=1
αi√
ni

= 1√
n

∑c
i=1

αi√
β̃i

. If we write wi =
αi

β̃i
, then by Hölder’s

inequality:

c∑
i=1

αi√
β̃i

=

c∑
i=1

√
αi

β̃i

√
αi =

c∑
i=1

(
√
wi

√
αi) ≤

√
∥w∥1

√√√√ c∑
i=1

αi︸ ︷︷ ︸
=1

. (3.9)

So that DΦ

(∑c
i=1 αiP̂i,

∑c
i=1 αiPi

)
≤ CRc/δ

√
∥w∥1
n

We finally turn to bounding the term DΦ

(∑c
i=1 αiPi, Q̂

)
. This is the only point of

the proof where we need to specify α. Under (LS) this is equal to DΦ

(∑c
i=1 αiQi, Q̂

)
.

We now distinguish between two possibilities:

• If α = α∗, then
∑c

i=1 α
∗
iQi = Q, so that using Theorem A.1, it holds with proba-

bility greater than 1− δ/2:

DΦ

(
c∑

i=1

α∗
iQi, Q̂

)
= DΦ

(
Q, Q̂

)
≤ C

R1/δ√
m

. (3.10)

• For α = α̃, it holds α̃i = mi/m, where mi is the number of target sample points
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of class i. We then get

DΦ

(
c∑

i=1

α̃iQi, Q̂

)
=

∥∥∥∥∥∥ 1

m

c∑
i=1

miΦ(Qi)−
1

m

n+m∑
j=n+1

Φ(xj)

∥∥∥∥∥∥
=

∥∥∥∥∥∥ 1

m

n+m∑
j=n+1

Φ(Qyj )−
1

m

n+m∑
j=n+1

Φ(xj)

∥∥∥∥∥∥
=

∥∥∥∥∥∥ 1

m

n+m∑
j=n+1

(Φ(xj)− Φ(Qyj ))

∥∥∥∥∥∥.
Now, notice that conditionally to the labels (yj)n+m

j=n+1, the target sample points xj
are independent, not identically distributed but with respective class conditional
distribution Qyj . We can therefore still appeal to Theorem A.1, and conclude that
it holds with probability greater than 1− δ/2:∥∥∥∥∥∥ 1

m

n+m∑
j=n+1

(Φ(xj)− Φ(Qyj ))

∥∥∥∥∥∥ ≤ C
R1/δ√
m

. (3.11)

In both cases we therefore get the same bound for this last term.

We bound (3.7) by putting together (3.8), (3.9) and either (3.10) (for α = α∗) or
(3.11) (for α = α̃). R1/δ ≤ Rc/δ, gives the first claimed inequality of the theorem.

To obtain the second claimed inequality, we can see that the worst case scenario for
w is obtain when αi = 1 for the smallest β̃i and 0 for the others.

Hence,
√

∥w∥1
n ≤ max

i

1√
ni

. □

3.5.2 Proof of Theorem 3.3
First, let us prove a lemma that we will use during the proof.

Lemma 3.1. Let H be a Hilbert space, C be a closed convex subset and V̄ an affine
subspace of H such that C ⊂ V̄ ⊂ H. For every x ∈ H we have

ΠC(x) = ΠC(ΠV̄ (x)),

with ΠC and ΠV̄ the minimum distance projection functions onto C and V̄ .

Proof. Let us take x ∈ H and c ∈ C. Note p = ΠV̄ (x), since c ∈ V̄ we can use Pythagoras’
theorem :

∥x− c∥2 = ∥x− p∥2 + ∥p− c∥2.
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The point c that minimises ∥x−c∥2, i.e ΠC(x), is the same point c that minimises ∥p−c∥2,
i.e ΠC(ΠV̄ (x)). □

Let us now prove Theorem 3.3.

Proof. Below, we use the notation α for α∗.
Given a feature map Φ, let us use the notation DΦ(P1,P2) = ∥Φ(P1)− Φ(P2)∥. Note

that DΦ will be a distance if and only if the mapping Φ is injective and will be a pseudo-
distance otherwise. We will use the notation introduced in Definition 3.2.

We write Cn = ConvHull
〈
Φ(P̂1), · · · ,Φ(P̂c)

〉
, the convex hull of the mapped empir-

ical distributions P̂i, and ΠCn the projection onto this convex. In the same fashion let
us write C = ConvHull⟨Φ(P1), · · · ,Φ(Pc)⟩, the convex hull of the mapped sources dis-
tributions and the associated projection ΠC . Finally let us write V̄ the affine subspace
generated by the Φ(Pi), namely V̄ = {

∑c
i=1 λiΦ(Pi) |

∑c
i=1 λi = 1}.

With the same computation as in the proof of Theorem 3.1 (see 3.5.1), we have:

∥α̂− α∥ ≤ 1√
∆min

DΦ

(
c∑

i=1

α̂iP̂i,

c∑
i=1

αiP̂i

)
.

Once again we have to upper-bound DΦ

(∑c
i=1 α̂iP̂i,

∑c
i=1 αiP̂i

)
. By the triangle

inequality:

DΦ

(
c∑

i=1

α̂iP̂i,

c∑
i=1

αiP̂i

)
≤

∥∥∥∥∥
c∑

i=1

α̂iΦ(P̂i)−ΠC(Φ(Q))

∥∥∥∥∥︸ ︷︷ ︸
(1)

+

∥∥∥∥∥ΠC(Φ(Q))−
c∑

i=1

αiΦ(P̂i)

∥∥∥∥∥︸ ︷︷ ︸
(2)

.

(3.12)
Let us analyse the second term first. We use the triangle inequality:∥∥∥∥∥ΠC(Φ(Q))−

c∑
i=1

αiΦ(P̂i)

∥∥∥∥∥ ≤

∥∥∥∥∥ΠC(Φ(Q))−
c∑

i=1

αiΦ(Pi)

∥∥∥∥∥+DΦ

(
c∑

i=1

αiPi,
c∑

i=1

αiP̂i

)
.

The second term has already appeared in Section 3.5.1. Using 3.8 and 3.9, the second
term can be bounded, with probability greater than 1− δ/2, by CRc/δ

√
∥w∥1/n.

For the first term we will require three elements:

1.
∑c

i=1 αiΦ(Pi) lies in C.

2. For all x, ΠC(x) = ΠC(ΠV̄ (x)), see Lemma 3.1.

3. ΠC is a contraction.



3.5. PROOFS 107

With that in mind,∥∥∥∥∥
c∑

i=1

αiΦ(Pi)−ΠC(Φ(Q))

∥∥∥∥∥ =

∥∥∥∥∥ΠC

(
c∑

i=1

αiΦ(Pi)

)
−ΠC

(
ΠV̄

(
Φ(Q)

))∥∥∥∥∥
≤

∥∥∥∥∥
c∑

i=1

αi

(
Φ(Pi)−ΠV̄

(
Φ(Q)

))∥∥∥∥∥
≤ max

i

∥∥∥Φ(Pi)−ΠV̄

(
Φ(Q)

)∥∥∥
= B∥(P,Q).

Therefore, we can upper bound the second term of (3.12) as such :∥∥∥∥∥ΠC(Φ(Q))−
c∑

i=1

αiΦ(P̂i)

∥∥∥∥∥ ≤ CRc/δ

√
∥w∥1
n

+B∥(P,Q).

Let us turn to the first term of (3.12). By the representation of DFM as a projec-
tion presented in Figure 3.1, it holds

∑c
i=1 α̂iΦ(P̂i) = ΠCn(Φ(Q̂)). Using the triangle

inequality,∥∥∥ΠCn(Φ(Q̂))−ΠC(Φ(Q))
∥∥∥ ≤

∥∥∥ΠCn(Φ(Q̂))−ΠCn(Φ(Q))
∥∥∥+ ∥∥∥ΠCn(Φ(Q))−ΠC(Φ(Q))

∥∥∥.
Since ΠCn is a contraction, we have

∥∥∥ΠCn(Φ(Q̂))−ΠCn(Φ(Q))
∥∥∥ ≤ DΦ(Q, Q̂).

That we can bound by CR1/δ/
√
m, like we did in Section 3.5.1 using Theorem A.1.

The only thing left to bound is the term ∥ΠCn(Φ(Q))−ΠC(Φ(Q))∥. For this we use
a result by Alber et al. [1] relating the distance between convex projections onto two
different convex sets in relation to their Hausdorff distance. Recall the definition of the
Hausdorff distance between two sets:

Definition 3.4. Let X and Y be two non-empty subsets of a metric space (M,d). We
define their Hausdorff distance H(X,Y ) by:

H(X,Y ) = max

{
sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)

}

Using Theorem 3.6 and Remark 3.7 of [1] :

∥ΠCn(Φ(Q))−ΠC(Φ(Q))∥ ≤
√
2H(C, Cn)(r + d),

where r = dist(0,Φ(Q)), d = max{dist(0, C), dist(0, Cn)} and 0 the origin. Since the
problem has a geometrical nature and is invariant by translation, we can translate ev-
erything so that Φ(Q) is the origin of the space. Hence, the bound reads

√
2H(C, Cn)d
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with d = max{dist(Φ(Q), C), dist(Φ(Q), Cn)}. Let us take care of the Hausdorff distance
first:

sup
x∈C

d(x, Cn) = sup
x∈C

∥∥∥x−ΠCn(x)
∥∥∥

= sup
λ∈∆c

inf
β∈∆c

∥∥∥∥∥∑
i

λiΦ(Pi)−
∑
i

βiΦ(P̂i)

∥∥∥∥∥
≤ sup

λ∈∆c

∥∥∥∥∥∑
i

λiΦ(Pi)−
∑
i

λiΦ(P̂i)

∥∥∥∥∥
≤ max

i
DΦ(Pi, P̂i).

A similar argument holds for supx∈Cn d(x, C), and hence H(C, Cn) ≤ maxi DΦ(Pi, P̂i).

We could simply bound d by 2 but we would obtain a loose bound. Instead, if we
write ΠC(Φ(Q)) =

∑c
i=1 λiΦ(Pi) then

d(Φ(Q), Cn) = ∥Φ(Q)−ΠCn(Φ(Q))∥

≤

∥∥∥∥∥Φ(Q)−
c∑

i=1

λiΦ(P̂i)

∥∥∥∥∥
≤ ∥Φ(Q)−ΠC(Φ(Q))∥+

∥∥∥∥∥
c∑

i=1

λiΦ(Pi)−
c∑

i=1

λiΦ(P̂i)

∥∥∥∥∥
≤ ∥Φ(Q)−ΠC(Φ(Q))∥+ max

i
DΦ(Pi, P̂i).

Finally, using Theorem A.1, we get with probability higher than 1− δ/2:√
2H(C, Cn)d ≤

√
2 max

i
DΦ(Pi, P̂i) +

√
2max

i
DΦ(Pi, P̂i) ∥Φ(Q)−ΠC(Φ(Q))∥

=
√
2 max

i
DΦ(Pi, P̂i) +

√
2max

i
DΦ(Pi, P̂i) B

⊥(P,Q).

≤
√
2 max

i

CRc/δ√
ni

+

√
2max

i

CRc/δ√
ni

B⊥(P,Q).

By putting everything together, with probability at least (1− δ), we have:

∥α̂− α∗∥ ≤ 1√
∆min

(CR1/δ√
m

+
√
2 max

i

CRc/δ√
ni

+

√
2max

i

CRc/δ√
ni

B⊥(P,Q)

+ CRc/δ

√
∥w∥1
n

+B∥(P,Q)
)

≤ 1√
∆min

(
c1 max

i

CRc/δ√
ni

+
CR1/δ√

m
+

√
2max

i

CRc/δ√
ni

B⊥ +B∥
)
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with c1 = 1 +
√
2 ≤ 3. □

3.5.3 Proof of Corollary 3.2

We directly apply Theorem 2 with the “dummy” class Φ(P0) := 0. If we write Ḡ the Gram
matrix of

{
Φ(P0),Φ(P̂1) · · ·Φ(P̂c)

}
then, as the first column of this matrix is zero,

∆min(Ḡ) = min
∥u∥2=1

1Tu=0

uT Ḡu = min
∥u∥=1

uT Ĝu = λmin.

The affine subspace AffSpan{Φ(Pi), i ∈ [0, · · · , c]} is equal to V := Span{Φ(Pi), i ∈ [c]}
and the convex hull ConvHull{Φ(Pi), i ∈ [0, · · · , c]} is equal the interior of C.

As we are in the open set label shift setting : Pi = Qi and hence

B∥(P,Q) = max
i

∥Φ(Pi)−ΠV (Φ(Qi))∥ = ∥ΠV (Φ(Q0))∥

The “orthogonal” term B⊥(P,Q) can be bounded by
√
α0 ∥Φ(Q0)∥ as follows:

B⊥(P,Q)2 =
∥∥Φ(Q)−Πint(C)(Φ(Q))

∥∥
(†)
≤

∥∥∥∥∥
c∑

i=1

α∗
iΦ(Pi) + α∗

0Φ(Q0)−
c∑

i=1

α∗
iΦ(Pi)

∥∥∥∥∥
= α0∥Φ(Q0)∥,

for the inequality (†), we use the fact that
∑c

i=1 α
∗
iΦ(Pi) ∈ int(C).

3.5.4 Proof of Proposition 3.3

Proof. Let us take u ∈ Rc such that ∥u∥ = 1, 1Tu = 0 and P the projection matrix on
< 1 >⊥, such that Pu = u. We have:

uT Ĝu = (Pu)T Ĝ(Pu)

= uT (PĜP )u.

Observe that PĜP is a symmetric matrix of rank c − 1, hence the eigenvectors vi
(associated to the eigenvalues λ1 ≥ λ2 · · · ≥ λc = 0) form an orthonormal basis of Rc.
Since u ∈< 1 >⊥, then u ∈ Span(v1, · · · , vc−1) so that there exist α ∈ Rc−1 such that
u =

∑c−1
i=1 αivi, and since ∥u∥ = 1 then ∥α∥ = 1.
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With that in mind :

uT (PĜP )u =

(
c−1∑
i=1

αivi

)T(c−1∑
i=1

αi(PĜP )vi

)

=

(
c−1∑
i=1

αivi

)T(c−1∑
i=1

αiλivi

)

=

c−1∑
i,j=1

λiαiαj⟨vi, vj⟩

=
c−1∑
i=1

λiα
2
i .

Hence min
∥u∥2=1

1Tu=0

uT Ĝu is equal to min
∥α∥=1

∑c−1
i=1 λiα

2
i . Using the change of variable βi = α2

i ,

this is equivalent to find : min
β∈∆c−1

< λ, β >, which is equal to λc−1. A straightforward

computation of PĜP with P = Ic − 1
c 1T1, shows that PĜP = M̂ . □

3.5.5 Proof of Theorem 3.2

Before we proceed, it is important to note that for any number of classes c and any vec-
tors {b1, · · · , bc}, if we write Ĝ the gram matrix of the vectors, Proposition 3.3 can be
reformulated as :

∆min := ∆min(b1, · · · , bc)
= min

∥u∥2=1

1Tu=0

uT Ĝu

= min
1Tu=0

uT Ĝu

∥u∥22
.

In the same fashion, note that the definition of Γ (Definition 3.3) can also be reformulated
as:
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Γ := Γ(b1, · · · , bc) = min
(I1,I2)∈P2(c)

d2(CI1 , CI2),

= min
∥v∥1=2

1T v=0

∥∥∥∥∥
c∑

i=1

vibi

∥∥∥∥∥
2

= min
∥v∥1=2

1Tu=0

vT Ĝv

= 4 min
1T v=0

vT Ĝv

∥v∥21
.

Finally, we will need the following lemma during the proof. It can be proved using the
Lagrange multiplier.

Lemma 3.2. If we note ∆k the (k − 1)-dimensional simplex, we have:

inf
u∈∆k

∥u∥22 =
1

k

We can move on to the proof of Theorem 3.2.

Proof. Let us write u∗ the miniser of min
1Tu=0

uT Ĝu
∥u∥22

and v∗ the minimiser of min
1T v=0

vT Ĝv
∥v∥21

.

For the upper bound we can do the following:

∆min

Γ/4
=

min
1Tu=0

uT Ĝu
∥u∥22

min
1T v=0

vT Ĝv
∥v∥21

≤
∥v∗∥21
∥v∗∥22

=
4

∥v∗∥22
≤ 4

min
∥x∥1=2

1T x=0

∥x∥22
.

Therefore we have the upper bound:

∆min ≤

 min
∥x∥1=2

1T x=0

∥x∥22


−1

Γ. (3.13)

In the same fashion, for the lower bound:

Γ/4

∆min
=

min
1T v=0

vT Ĝv
∥v∥21

min
1Tu=0

uT Ĝu
∥u∥22

≤
∥u∗∥22
∥u∗∥21

=
1

∥u∗∥21
≤ 1

min
∥y∥2=1

1T y=0

∥y∥21
.

Therefore we have the lower bound:

∆min ≥ 1/4

 min
∥y∥2=1

1T y=0

∥y∥21

Γ. (3.14)
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All is left to do to find the constants is two find the solutions of the two minimisation
problems in Equation (3.13) and (3.14).

For the problem of Equation (3.13), note that the condition ∥x∥1 = 2 and 1Tx = 0

together imply that the optimal solution x∗ satisfy
∥∥x∗+∥∥1 =

∥∥x∗−∥∥1 = 1 where, x∗+ are
the positive coordinate of x∗ and x∗− are the negative coordinate. We do not know how
many coordinates are positive in x∗, but if we write that number c1, then x∗+ ∈ ∆c1 and
x∗− ∈ ∆c−c1 . Hence, we can rewrite the problem as:

min
∥x∥1=2

1T x=0

∥x∥22 = min
c1<c

min
x1∈∆c1

x2∈∆c−c1

∥x1∥2 + ∥x2∥2.

Using Lemma 3.2:

min
∥x∥1=2

1T x=0

∥x∥22 = min
c1<c

min
x1∈∆c1

x2∈∆c−c1

∥x1∥2 + ∥x2∥2.

= min
c1<c

1

c1
+

1

c− c1

=
4

c
, if c even.

=
4c

(c+ 1)(c− 1)
, if c odd.

This conclude the proof of the upper bound.

For the problem of Equation (3.14), note that if we take ȳ =
(
−1/

√
2, 1/

√
2, 0 · · · , 0

)
,

ȳ satisfy the two conditions and ∥ȳ∥21 = 2. Therefore, the value we search is at least
smaller than 2. Let us suppose that it is strictly inferior.

We have ∥y∗∥1 <
√
2. Since 1T y∗ = 0, then

∥∥y∗+∥∥1 = ∥∥y∗−∥∥1. We can now conclude:

∥∥y∗+∥∥2 ≤ ∥∥y∗+∥∥1 = 1

2
∥y∗∥1 <

1√
2∥∥y∗−∥∥2 ≤ ∥∥y∗−∥∥1 = 1

2
∥y∗∥1 <

1√
2
,

which leads to the following contradiction:

∥y∗∥22 =
∥∥y∗+∥∥22 + ∥∥y∗−+∥∥22 < 1.

Therefore, min
∥y∥2=1

1T y=0

∥y∥21 = 2, which conclude proof of the lower bound. □



Chapter 4

Covariance-aware Distribution
Feature Matching

In this chapter, we study an extension of Distribution Feature Matching for label shift quan-
tification called Mahalanobis Distribution Feature Matching or M -DFM.

What we propose in this chapter is to take into account the covariance structure of the
data by changing the distance. The metric used in the previous chapter was the ambient
metric of the space on which we embed the data, the L2 distance if we used a vectorisation
or the maximum mean discrepancy if we used kernel mean embedding, in this chapter we will
use a Mahalanobis-type distance using a matrix (or linear operator) M .

We present a general performance bound for this new framework under label shift by
replacing the Hoeffding theorem, which was at the heart of the proof of Theorem 3.1, with
a Bernstein theorem, which allows us to derive a bound that reveals the covariance of the
source embeddings. Using this new theorem, we present a criterion for the choice of M as
well as a close-form solution of its minimiser.

Finally, we present a numerical study on simulated and real data sets to demonstrate the
usefulness of this extension.
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4.1 Introduction

We keep the same notation as in Chapter 3. See the corresponding paragraph in Section 3.1.
We will note Φ: X → F a feature map from the covariate space to a Hilbert space F .

The embedding could be, for instance, the output of a (soft-)classifier, a hidden layer of a
neural network, the implicit embedding function induced by a kernel k, or the Random Fourier
Feature Embedding.

Whatever the choice of Φ, we note Φ(P) := EP[Φ(X)] the mean embedding of P by
Φ and Σi := EP[(Φ(X) − Φ(P))⊗2] the covariance matrix (or covariance operator) of the
push-forward distribution of P by Φ.
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Finally, we denote by M : F → F a matrix (or a linear operator) that is independent of
the data.

4.1.1 Distribution Feature Matching

In the previous chapter we took the distribution matching point of view of quantification,
presented in Equation (2.31), where we searched for the mixture of P̂i that is closest to
Q̂. To do this, we have proposed a general framework called Distribution Feature Matching
(DFM), where we embed the distributions by taking the mean of the feature map Φ under
the distributions. What we have discussed in Sections 2.3 and 3.2 is that some methods
such as ACC/BBSE [46, 48, 77] or Kernel methods [70, 73, 85] can be recast as particular
instances of DFM. Let us recall the definition of the DFM framework.

Definition 4.1 (Distribution Feature Matching). Using the notations defined above,
we call Distribution Feature Matching (DFM) any estimation procedure that can be
formulated as the minimiser of the following problem:

α̂ = argmin
α∈∆c

∥∥∥∥∥
c∑

i=1

αiΦ(P̂i)− Φ(Q̂)

∥∥∥∥∥
2

F

(P)

where ∆c is the (c− 1)-dimensional simplex.

In Section 2.2.2 we presented and discussed methods that use the output of a soft classi-
fier. The idea behind this category of methods was to use the full information given by a soft
classifier and not just the argmax. What we propose in this chapter is of the same nature:
use all the information provided by the feature map Φ.

The embeddings proposed in DFM use the means of the embeddings and thus completely
forget about the points that were used to compute those means. In particular the method is
completely agnostic to the variance both in the algorithm and in the theoretical analysis, see
Theorem 3.1. The algorithm ignores the covariance by nature (we only compute the mean),
while the theorem ignores it because at the heart of the proof is a Hoeffding inequality
(Theorem A.1) that hides the variances under a constant C.

Figure 4.1 illustrates why we would want to take the variance into account.

4.2 Mahalanobis Distribution Feature Matching

Let us introduce our general framework, Mahalanobis Distribution Feature Matching or M -
DFM.
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Figure 4.1: This Figure is analogous to Figure 3.1. It shows that the DFM pro-
cedure can be thought of as the projection onto the convex hull of the source
embeddings of the target embedding, except that this time the covariance matri-
ces are not multiples of the identity as we have showed in Figure 3.1. If, instead of
projecting with respect to the ambient metric, as we do in DFM, we had projected
Φ(Q̂) with respect to the metric induced by the covariances, we would have been
closer to the real solution.

Definition 4.2 (Mahalanobis Distribution Feature Matching). Using the notations de-
fined above, we call Mahalanobis Distribution Feature Matching (M -DFM) any estimator
that can be formulated as the minimiser of the following problem:

α̂ = argmin
α∈∆c

∥∥∥∥∥M
(

c∑
i=1

αiΦ(P̂i)− Φ(Q̂)

)∥∥∥∥∥
2

F

(PM)

where ∆c is the (c− 1)-dimensional simplex.

Strictly speaking, (PM) can only be called Mahalanobis if we choose M = Σ−1/2, where
Σ denotes the covariance matrix (or operator) of the true distributions

∑c
i=1 α

∗
iΦ(Pi). Nev-

ertheless, we stick to this terminology because the true Mahalanobis distance and our new
approach share the same philosophy : taking into account the variance of the distributions in
the metric.

4.2.1 Link with the Maximum Kernel Fisher Discriminant
Ratio

As recall from Section 3.2.1, when the function Φ used is the Kernel Mean Embedding [87],
the function DΦ(P,Q) = ∥Φ(P)− Φ(Q)∥ is called the Maximum Mean Discrepancy [61],
originally proposed for two-sample testing.

It is a known fact, at least since the works of Harchaoui et al. [31, 67] that MMD is sub-
optimal. More recently, Hagrass et al. [66] proposed a in-depth analysis of the suboptimality
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of MMD and show that “the popular MMD (maximum mean discrepancy) two-sample test is
not optimal in terms of the separation boundary measured in Hellinger distance”.

Harchaoui and his co-author proposed to “ incorporate the covariance structure of the
probability distributions into the test statistics”1 in the same fashion as what we propose in
this chapter. The resulting test statistic is called the Maximum Kernel Fisher Discriminant
Ratio.

4.3 Theoretical Analysis of M-DFM
We now provide statistical guarantees for M -DFM. First, we note that the theoretical anal-
ysis we gave for DFM in Section 3.3 can still be applied to M -DFM when we apply it to(
MΦ(P̂i)

)c
i=1

. We call this analysis a Hoeffding based analysis of M -DFM because the
proofs are based on a Hoeffding inequality presented in Appendix A.1. The shortcoming of
this theorem is that it hides the covariance information under a constant C, which explains
why the covariance of the source embeddings does not appear in the bounds we presented.

To overcome this, we propose an analysis of M -DFM, this time using a Bernstein in-
equality presented in Appendix A.2.

The matrix M is assumed to be independent of the data in this analysis.

4.3.1 Hoeffding based Analysis of M-DFM
We make the same identifiability hypothesis on the mapping Φ, namely the linear indepen-
dence of the distribution embeddings A1 and the boundedness hypothesis A2, as we did for
DFM. See Section 3.3 for further explanation.

However, the linear independence of the source embeddings does not imply the linear
independence of

(
MΦ(P̂i)

)c
i=1

. Therefore we make the following hypothesis about the
operator M .

c∑
i=1

βiΦ(Pi) ∈ ker(M) ⇐⇒ β = 0, (A3)

where ker(M) denotes the kernel of the linear operator M . This condition is checked, for
example, when M has full rank.

The boundedness of the source embeddings implies the boundedness of
(
MΦ(P̂i)

)c
i=1

but the constant change. We have:

∥MΦ(x)∥ ≤ ∥M∥opC,

where ∥M∥op is the operator norm of M .
We introduce the following notation and give a corollary of Theorem 3.1 for M -DFM.

1Their test is a kernel extension of the classical Hotteling’s T 2-statistic [76]
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Definition 4.3 (Gram matrices). We denote Ĝ the Gram matrix, and ĜM the Maha-
lanobis Gram matrix of the empirical source embedding.

That is, if we write V̂ =
[
Φ(P̂i), · · · ,Φ(P̂c)

]
∈ RD×c then Ĝ = V̂ ⊤V̂ , i.e. Ĝi,j =〈

Φ(P̂i),Φ(P̂j)
〉

and ĜM = V̂ ⊤(M⊤M)V̂ , i.e. ĜM
i,j =

〈
MΦ(P̂i),MΦ(P̂j)

〉
.

Furthermore, let λmin(N) be the smallest eigenvalue of any matrix N , i.e. λmin(N) :=

min
∥u∥=1

uTNu, and ∆min(N) be the smallest eigenvalue of any matrix N restricted to the

space < 1 >⊥, i.e. ∆min(N) := min
∥u∥2=1

1Tu=0

uTNu. In particular, it holds ∆min(N) ≥ λmin(N).

A direct application of Theorem 3.1 gives the following corollary.

Corollary 4.1 (Hoeffding based). If the label shift hypothesis LS holds, if the mapping
Φ satisfies the assumptions (A1) and (A2), if the operator M satisfies the assumption
A3, then for any δ ∈ (0, 1), with probability greater than 1 − δ, the solution α̂ of (PM)
satisfies:

∥α̂− α∗∥ ≤
2∥M∥opCRc/δ√

∆min(ĜM )

(√
∥w∥1
n

+
1√
m

)
(4.1)

≤
2∥M∥opCRc/δ√

∆min(ĜM )

(
1√

mini ni
+

1√
m

)
(4.2)

with w = α∗

β̃i
and Rx = 1 +

√
2 log 2x.

The same result holds when replacing α∗ by the (unobserved) vector of empirical
proportions α̃ in the target sample, both on the left-hand side and in the definition of w.

The proof of Corollary 4.1 is exactly the same as the proof of Theorem 3.1, which can be
found in Section 3.5.1. The conditions A1 and A3 ensure that ∆min(Ĝ

M ) is not null, while
the condition A2 is responsible for the constant ∥M∥opC.

As discussed in detail in Section 3.3.2, ∆min(Ĝ) is an empirical quantity that can be
minimised on the training dataset to choose the feature mapping Φ, or equivalently to choose
the bandwidth σ of the Gaussian kernel. We discussed the geometric property of this quantity
and explained why ∆min was the natural quantity to appear rather than λmin in Sections 3.3.1
and 3.3.2.

For M -DFM the situation is different because we have two hyperparameters to choose:
Φ (or the bandwidth σ) and an operator M . These two choices are interdependent, as the
best M depends on the embeddings and the best Φ is likely to depend on the choice of M .
The criterion for M -DFM is more complex than that for DFM because it involves both the
Mahalanobis Gram matrix ĜM and the operator norm of M .
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The following theorem shows that, according to Corollary 4.1, no matrix M can be better
than the identity.

Theorem 4.1. For any given feature map Φ which satisfies Conditions A1 and A2, for
any linear operators M that satisfies Conditions A3 we have

∥M∥op√
∆min(ĜM )

≥
∥Id∥op√
∆min(Ĝ)

. (4.3)

The proof can be found in Section 4.6.1.
In other words, we can not do better than taking M = Id, and the bound (4.1) is the

same as in (3.2), where we use DFM. From this analysis, we have nothing to gain by using a
Mahalanobis distance.

We have called Corollary 4.1 a Hoeffding -based analysis of M -DFM because the heart of
the proofs is based on a Hoeffding inequality, which is presented and proved in Appendix A.1.

The Hoeffding inequality is a probability upper bound on the distance between a sum
of bounded independent random variables and the mean of the expectations. However, this
upper bound hides the covariance information below the bound of the random variables, in
our case ∥M∥opC. It is therefore not surprising that this analysis does not allow us to obtain
a value of M depending on the variance.

4.3.2 Bernstein-based Analysis of M-DFM
To take into account the variance and to get a better criterion for the choice of the operator
M , we have to rely on a Bernstein-based inequality instead of a Hoeffding inequality. We
describe this variance-aware alternative to Hoeffding in detail in Appendix A.2, and we also
present a variant based on Bennett in Appendix A.3, which we will not use in our analysis
because the constants are less sharp.

The proof follows the same path as that of Theorem 3.1, except that we replace Theo-
rem A.1 with Theorem A.3. See the proof in Section 4.6.2.

Theorem 4.2 (Bernstein based). If the Label Shift hypothesis LS holds, if the mapping
Φ satisfies assumptions (A1) and (A2), if the operator M satisfies assumptions A3, then
for any δ ∈ (0, 1), with probability greater than 1− δ, the solution α̂ of (PM) satisfies:

∥α̂− α̃∥ ≤ R1(δ, c)
∥M∥opC√
∆min(ĜM )

(
∥w∥1
n

+
1

m

)
(4.4)

+R2(δ, c)

√
Tr(MΣα̃M⊤)

∆min(ĜM )

(√
∥w∥1
n

+
1√
m

)
, (4.5)

with w = α̃/β̃, R1(δ, c) =
4
3 log(4c/δ), R2(δ, c) = 2

√
2 log(4c/δ) and Σα̃ =

∑c
i=1 α̃Σi.
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Remark. The theorem is still true if we replace ∆min(Ĝ
M ) with λmin(Ĝ

M ), but unlike
Theorem 3.1 we can not replace the empirical proportions α̃ with the true proportions
of the target α∗.

The upper bound of ∥α̂− α̃∥ depends on the value we want to estimate α̃, as it appears
in ∥w∥1 and in Tr(MΣα̃M

⊤). The dependency in ∥w∥1 can be removed as we did in
Equation (3.3) where we replaced ∥w∥1 with the worst case scenario where α̃i = 1 for the
smallest β̃i and 0 for the others. Put simply, the worst case is when the class for which we
have the least information in the source distribution (i.e. the smallest β̃i) becomes the only
class in the target. In this case, 1

n∥w∥1 = min
i

1
ni

. In situations where one of the classes is rare

on the source domain, the term min
i

1
ni

explodes, which is not the case with the formulation

in Equation (4.5), so this dependency in ∥w∥ is actually desirable. On the other hand, note
that the best case scenario for ∥w∥1 is obtained when either α̃ equals β̃ or when βi =

1
c . In

both cases : ∥w∥1 = c.

However, the dependence of α̃ on Tr(MΣα̃M
⊤) can not be removed unless we make the

unlikely assumption that all classes have the same covariance matrix Σ. In this case, Σα̃ = Σ.
As explained in Figure 4.2, this α̃ dependence in the covariance matrix is desirable.

Figure 4.2: Analogous to Figure 4.1, but this time the two classes do not share the
same covariance matrix. The metric to use to project onto the simplex (here the
red dotted line) depends on the position of Φ(Q̂). If we are close to the first class,
we want to project using M = Id, whereas if we are close to the second class, we
want to project using the covariance matrix of the second class.

The bound is the sum of two terms. The first one (4.4) converges to zero at rate O (1/n).
The dominant term is (4.5) as it converges at rate O (1/

√
n), but this time neither C nor

∥M∥op appear and are replaced by
√
Tr(MΣα̃M⊤). For a sufficient number of points n, the

first term will be close to zero and only the second term will remain. We can ask ourselves if
we have gained anything by replacing ∥M∥opC with

√
Tr(MΣα̃M⊤).
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We have :

Tr(MΣα̃M
⊤) = Tr(Σα̃M

⊤M)

≤ Tr(Σα̃)
∥∥∥M⊤M

∥∥∥
op

≤ E
[
∥X − E[X]∥2

]
∥M∥2op

≤ C2∥M∥2op

This is not a proof that the Bernstein-based bound (4.5) is sharper than the Hoeffding
one (3.2), because the constants in front of these terms are not the same (in fact the constant
in (3.2) is ∼ 0.6 times smaller than that of (4.5) for δ = 0.05), but due to the nature of
the bound (the trace appears and not the operator norm) there is something to be gained by
using a M other than the identity.

4.4 Optimal choice of M
Theorem 4.1 based on Hoeffding could not be used to derive a criterion for the optimal choice
of M . The Bernstein based theorem, on the other hand, can be used for M .

In this section we assume that we use a given finite dimensional embedding Φ, i.e. F =

RD. This is the case, for instance, when we use MMD with Random Fourier Features, or
when we embed the data using a classifier. In this framework, the operator M is now a
matrix, which we assume is square (M ∈ RD×D), but could also be in RD×K , since as we
explained before what matters is M⊤M ∈ RD×D.

There are two places where the dependence of M appears in Theorem 4.2. In Equa-
tion (4.4) we have the same criterion as in (4.3):

∥M∥op√
∆min(ĜM )

,

but we can ignore this term because it is in front of something that converges to zero at rate
O (1/n). The term we want to minimise is the one in Equation (4.5) :√

Tr(MΣα̃M⊤)

∆min(ĜM )
. (4.6)

4.4.1 Connection with Fisher Discriminant Analysis

Let us explore the connection between Fisher Discriminant Analysis (FDA), introduced by
Fisher [45] and the Criterion (4.6). First, let us recall the principle of FDA (see for instance
Ghojogh et al. [54] for a detailed tutorial on FDA).
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Suppose we have access to a data set {(zi, yi)}ni=1 ∈ Rd ×Y, the goal of FDA is to find
a lower dimensional subspace that separates the classes as much as possible while minimising
the spread of each class. In other words, if we take U = [u1, · · · , uc] as a basis of a subspace
of RD, we search for the U that maximises the variance between classes when projected onto
Span(U), while minimising the variance within classes when projected onto Span(U). This
results in the following minimisation:

min
U

Tr(UTSWU)

Tr(UTSBU)
, (4.7)

with

SW =
1

n

c∑
j=1

nj∑
i=1

1{yj = i}(zi − µj)(zi − µj)
T ; (4.8)

SB =

c∑
j=1

α̃j(µj − µ)(µj − µ)T , (4.9)

where µj is the mean of class i and µ the overall mean. With our notation, zi = Φ(xi),
µj = Φ(P̂j) and µ := µα̃ =

∑c
j=1 α̃µj = Φ(P̂).

The criterion (4.6) is of the same kind. As we will see, the term Tr(MΣα̃M
⊤) defines a

variance within classes, while the term ∆min(Ĝ
M ) can be understood as a variance between

classes. However, the problems are seen from different angles. In our case we are not looking
for a Span(U) to project onto, but for a metric defined by M⊤M . This can be seen from
the fact that in one case we minimise over U ∈ RD×c and in the other over M ∈ RD×D.
However, if we note A := UU⊤ and B := M⊤M , the two criteria can be rewritten

min
A

Tr(ASW )

Tr(ASB)
and min

B

Tr(BΣα̃)

∆min(V̂ ⊤BV̂ )
,

where we recall that V̂ was defined in Definition 4.3 as the source embeddings matrix. The
two minimisations can be performed on the same space of A and B, but to go back from
A to U and from B to M we have to make different assumptions for A and B. For A we
have to assume that its rank is equal to the number of classes c, while for B we have to
assume that B is symmetric semidefinite positive. This is the first difference between the two
frameworks.
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For the within-classes variance SW , we have :

SW =
1

n

c∑
j=1

nj∑
i=1

1{yj = i}(zi − µj)(zi − µj)
T

=
c∑

j=1

nj

n

1

nj

nj∑
i=1

1{yj = i}(zi − µj)(zi − µj)
T

=

c∑
j=1

α̃jΣ̂i,

where Σ̂i is the empirical covariance matrix of class j. The two numerators have the same
nature, they both represent the variance within classes of the sources. However, in FDA
this variance is purely empirical, whereas in our criterion the numerator is a mixture of an
empirical part α̃ and a theoretical part Σi.

The change that occurs in the denominators is more profound. We said in Definition 3.2
that for a matrix N , ∆min(N) can be defined as the second smallest eigenvalue of the centred
Gram matrix. If we note that λ(−2) is the second smallest eigenvalue, then according to the
proof in Section 3.5.4, ∆min(N) = λ(−2)(PNP ), where P := Id− 1

c1 is a projection matrix.
When N is a Gram matrix, PNP is the centred Gram matrix. With all this in mind, let us
upper bound the second smallest eigenvalue with the trace. Since the smallest eigenvalue of
P V̂ ⊤BV̂ P is zero, we have :

∆min(V̂
⊤BV̂ ) = λ(−2)(P V̂ ⊤BV̂ P ) ≤ (c−1)−1Tr(P V̂ ⊤BV̂ P ) = (c−1)−1Tr(BV̂ P V̂ ⊤).

We have :

V̂ P V̂ ⊤ = V̂ V̂ ⊤ − 1

c
V̂ 1V̂ ⊤

= V̂ V̂ ⊤ − 1

c2
V̂ 1(V̂ 1)⊤

= V̂ V̂ ⊤ − cµµ⊤

= c×

(∑
i=1

1

c
µiµ

⊤
i − µµ⊤

)
,

and therefore :

∆min(V̂
⊤BV̂ ) ≤ c

c− 1
Tr

(
B
∑
i=1

1

c
µiµ

⊤
i − µµ⊤

)
(†)
=

c

c− 1
Tr(BSB).
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where † is only true if α̃i = 1/c.

This highlights two differences between the FDA criterion (4.7) and ours (4.6). We replace
the second smallest eigenvalue by the trace and our criterion does not depend the true value
of α̃. Note that in their case it is not a problem because the true labels are known, FDA is
not a method to do classification but to do dimension reduction.

4.4.2 Optimal M
The intuition we have about the optimal M is that it should act on the subspace Span(V̂ )

to maximise ∆min(Ĝ
M ) by minimising the variance on that subspace. On the orthogonal

complement of Span(V̂ ), however, it is better to “kill” the action of M to minimise the
variance, i.e. the kernel of M should contain the complement of Span(V̂ ).

To define the optimal M , we must first define the pseudo-inverse of a matrix.

Definition 4.4 (Moore–Penrose inverse). Let A ∈ RD×c be a matrix. The pseudo-inverse
of A, denoted by A+, is the only matrix in Rc×D that satisfies the four equations:

1. AA+A = A

2. A+AA+ = A+

3. (AA+)⊤ = AA+

4. (A+A)⊤ = A+A

Proposition 4.1 (Moore–Penrose inverse). The pseudo-inverse of a matrix A satisfies
these properties:

1. A+A = Πrange(A⊤) and AA+ = Πrange(A).

2. A+ = (A⊤A)+A⊤ = A⊤(AA⊤)+.

3. When the rank of A is equal to its number of columns A+ = (A⊤A)−1A⊤.

4. If A = PDQ is the SVD decomposition of A, we have A+ = PD+Q, with D+
ii =

D−1
ii if Dii ̸= 0.

Where ΠS denotes the orthogonal projector on a linear subspace S.

We can now characterise the class of optimal M . Two remarks beforehand: first, as
pointed out earlier, we are not looking for the optimal M , but the optimal M⊤M ∈ RD×D,
which we show to be unique up to a multiplicative factor. Second, we replace the optimal
criterion (4.6) by a proxy (4.10) where we replace ∆min in the denominator by λmin.
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Theorem 4.3. Let us write W = Σ
−1/2
α̃ V̂ and PDQ the SVD decomposition of W , with

P ∈ O(D), Q ∈ O(c) and D ∈ RD×c a rectangular diagonal matrix with positive real
numbers on the diagonal, i.e. D = [D0, 0]

T , with D0 = Diag(σ1, · · · , σc) ∈ Rc×c.
For any given feature map Φ that satisfies the conditions A1 and A2, the matrices M

that minimise the criterion:
Tr(MΣα̃M

⊤)

λmin(ĜM )
, (4.10)

satisfy up to a multiplicative factor :

M⊤M = Σ
−1/2
α̃

(
WW⊤

)+
Σ
−1/2
α̃ . (M)

For these matrices, Criterion (4.10) is then equal to

Tr
((

WW⊤)+) =
c∑

i=1

σ−2
i . (4.11)

Proof can be found in Section 4.6.3.
It is important to note that the formulation (M) depends on V̂ , while Theorem 4.2

suppose an M that is independent of the data. Therefore, paradoxically, the theorem does
not hold for the optimal M . They is still work to be done to fix this issue.

One approach is to apply Theorem 4.2 to M⊤
∗ M∗ := Σ

−1/2
α̃

(
Σ
−1/2
α̃ V V ⊤Σ

−1/2
α̃

)+
Σ
−1/2
α̃ ,

i.e. for the population version of the optimal M . We can then study ∆min(Ĝ
M )/∆min(Ĝ

M∗)

asymptotically to obtain a bound that applies to the optimal M with the same rate of
convergence.

This work is beyond the scope of this manuscript and is left for future research.

Remark. We have simplified by replacing ∆min(Ĝ
M ) with λmin(Ĝ

M ) in the formulation
of the criterion. While it is not clear whether (M) is the minimum of the original criterion
(4.6), we can note that, with this M : ∆min(Ĝ

M ) = λmin(Ĝ
M ) = 1 and therefore the

value of the criterion is equal to (4.11) in both cases.

To grasp the nature of (M) let us look at M⊤M as a bilinear form on RD. Let us write
E = (ec+1, · · · , eD) an orthonormal basis of the orthogonal of Span(V ) with respect to Σ−1:

eiΣ
−1ej = 0 if i ̸= j

eiΣ
−1ei = 1.

For any α, β ∈ Rc and γ ∈ RD−c, if we note x = V̂ α ∈ Span(V̂ ) and y = V̂ β+Eγ ∈ RD

then
x⊤M⊤My = α⊤β.

Therefore, on Span(V̂ ), M⊤M acts as if the source embeddings were an orthonormal basis
of the subspace and elsewhere it acts as a projector on V̂ with respect to Σ−1.
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Intuitively, the reason why M⊤M acts as a hybrid between a Euclidean distance on V̂ and
a Mahalanobis distance on V̂ ⊥ is that on the one hand we use the L2 metric to compare our
approximation (∥α̃− α̂∥2), but on the other hand we use a Mahalanobis metric to compare
the embeddings.

Solution of (PM) with the optimal M . With all that in mind, let us write the
embedding of the target as Φ(Q̂) = V̂ β +Eγ. Then the solution of (PM) when we take an
optimal M , can be rewritten as:

α̂ = argmin
α∈∆c

∥∥∥∥∥M
(

c∑
i=1

αiΦ(P̂i)− Φ(Q̂)

)∥∥∥∥∥
2

F

= argmin
α∈∆c

αTα− 2αTβ.+ β⊤β

= argmin
α∈∆c

∥α− β∥22

In particular, if β ∈ ∆c then α̂ = β.

Therefore we can summarize the effect of this optimal M as such:
The embedding of the target Φ(Q̂) is first projected onto V̂ with respect to the covariance

operator as desired in Figure 4.1. However, unlike the figure, the covariance is ignored on the
space V̂ and only the geometric nature of the convex hull is taken into account, because if
we assume that the target embedding belongs to the Span of the source embeddings, then
the solution is given by

α̂ = Π∆c

(
V̂ +Φ(Q̂)

)
,

where Π∆c is the projection onto the simplex.

4.4.3 Taking the pooled covariance matrix

As desired, the covariance matrix appears in the formulation of M . However, the covariance
is not taken into account in the Span of the source embeddings, as we wanted in Figure 4.1.
One way to have this would be to take the pooled covariance matrix: Σα̃ directly.

Solution of (PM) with the pooled covariance matrix. The solution of (PM)
when we take M = Σ

−1/2
α̃ can be rewritten:
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α̂ = argmin
α∈∆c

∥∥∥∥∥Σ−1/2
α̃

(
c∑

i=1

αiΦ(P̂i)− Φ(Q̂)

)∥∥∥∥∥
2

F

= argmin
α∈∆c

αT
(
V̂ ⊤Σ−1

α̃ V̂
)
α− 2αT

(
V̂ ⊤Σ−1

α̃ V̂
)
β + β⊤

(
V̂ ⊤Σ−1

α̃ V̂
)
β

= argmin
α∈∆c

∥α− β∥2W ,

with W = Σ
−1/2
α̃ V̂ .

In particular, if β ∈ ∆c then α̂ = β.
The effect of the pooled covariance matrix can be summarize as such:
As for the optimal M , the embedding of the target Φ(Q̂) is first projected onto V with

respect to the covariance operator, and if the target embedding belongs to the convex hull
of the source embeddings, i.e. β ∈ ∆c, the two matrices give the same results. If not, the
pooled covariance matrix and the optimal M differ in the way the vector β is projected onto
the simplex. For the optimal M we projected with respect to the ambient matrix in Rc, while
for Σα̃ we projected with respect to the matrix W .

4.4.4 Approximation of M and choice of bandwidth
For a given feature map Φ, we have a closed form solution of M that minimises the Crite-
rion (4.10) given by Equation (M). This closed form solution depends on V̂ the empirical
source covariance matrix that can be computed for a given dataset but unfortunately also on
the covariance matrices of the source embeddings (Σi)

c
i=1 and on the true proportions we

want to estimate α̃, two quantities that are not available to us.
We can estimate the covariance matrices of the source embeddings with the usual covari-

ance estimator:

Σ̂i =
1

ni − 1

n∑
j=i

1{yj = i}(Φ(xj)− Φ(Pi))(Φ(xj)− Φ(Pi))
⊤.

However, for any true proportions α̃ the matrix Σ̂α̃ :=
∑c

i=1 α̃iΣ̂i will most likely be singular.
We propose to define I(Σ̂i; γ, α) ≈ Σ

−1/2
α , a regularised version of the square root of

the inverse covariance matrix, with regularization parameter γ and proportion vector α. Two
classical regularisation choices are the Tikhonov regularisation :

I(Σ̂i; γ, α) =
(
Σ̂α + γI

)−1/2
,

and the spectral truncation of rank d :

I(Σ̂i; 1/d, α) =

d∑
p=1

λ−1/2
p (epe

⊤
p ),
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where (λp, ep) denote the sequence of eigenvalues and eigenvectors of the matrix Σ̂α.
In the following, we will use the Tikhonov regularisation and therefore we have a new

hyperparameter to deal with : the regularisation parameter γ.

For the proportions α̃, we explained in Figure 4.2 that it is desirable to have this depen-
dence on the true proportions in the bound. In practice, however, we need to have an estimate
of the proportions before computing M . We propose a procedure where the proportions are
first estimated using DFM, and then the output is used to compute an estimate of the matrix
M used for M -DFM.

This two-step procedure can be enhanced even more by proposing a multi-step procedure,
where we perform k steps of M -DFM where the matrix M is computed using the proportions
obtained during the previous step. We stop the algorithm after k steps of after convergence
of the iterations.

In practice, during the experiments we have not seen any difference between the two-step
and multi-step procedures.

Remark. The proof of Theorem 4.2, and in particular the Bernstein’s theorem presented
in Appendix A.3 on which the bound is based, suppose that the matrix M used is
deterministic. Therefore the theorem is not true if the data are used to estimate both
M and the embeddings Φ(Pi). We already mention the dependence in V̂ and said that
in practice we could use V̂ directly. For the dependence in Σi, we can split the data in
two, used a part for the embeddings and the other part for M .

Choice of bandwidth σ If we rely on the Gaussian kernel we need a criterion to choose
the bandwidth σ. The only term in Equation (4.5) that depends on the bandwidth is (4.10).
So the criterion to choose the bandwidth is the same as the one use to choose M . But as we
said above, this criterion depends on Σ

−1/2
α̃ so we have to rely on an estimation which also

depends on a hyperparameter γ.
Similarly to DFM, where we used ∆min (see Section 3.3.2) as a criterion that we maximised

by an exhaustive grid search on R+, for M -DFM we propose to do an exhaustive grid search
on both γ and σ to maximise (4.11).

However, to reduce the computation time, we propose an alternative where we first
estimate the σ that maximises ∆min and then use (4.11) to estimate the best γ parameter.
This procedure replaces one grid search in two dimensions with two grid searches in one
dimension, and avoids having to compute many covariance matrices.

4.5 Experiments

In this section we first show that using the covariances actually improves the results and was
not just a theoretical work.
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We pointed out that there are two possible choices of M : the optimal M and the pooled
covariance matrix. Theoretically, the optimal M should give better results, but as we shall
see, the two matrices give similar results. In a second step, we will try to understand why the
results are similar.

4.5.1 Impact of M on Quantification

First, let us describe the experiments we performed to evaluate the quantification perfor-
mance of M -DFM. We tested the same two settings as in Section 3.4.2. The first setting
is completely artificial, the data is generated using a Gaussian mixture in Rd. In the second
setting, we use a flow cytometry dataset which is a subset of a larger dataset that we present
in detail in Chapter 5.

The four methods tested are all part of the M -DFM framework and for each method
we use M⊤M = I, M⊤M =M and M⊤M = Σ−1

α̃ . The first case is a simple DFM
procedure, which we compare to either M -DFM with the optimal criterion or M -DFM with
the covariance matrix directly.

Let us first look at the four embeddings we are considering in this section:

Names Embedding functions Φ

BBSE f̂(x)

RFFM
√

2
D

[
cos(ωT

i x), sin(ωT
i x)
]D/2

i=1

FourierClassifer
√

2
D

[
cos(ωT

i f̂(x)), sin(ωT
i f̂(x))

]D/2

i=1

MeanDFM x

Table 4.1: Overview of the four embeddings we consider in this section. f̂ is a soft
classifier trained on the source and ωi is sampled from the spectral distribution of
a kernel, in our case the Gaussian one.

The first two, BBSE and RFFM, were introduced in Chapter 3. FourierClassifier is similar
to Moreo et al.’s KDEy [85], which was presented in Section 2.2.2. The embedding is obtained
by computing the RFF embedding not directly on the data, but on the output of a classifier
f̂ . The last method, MeanDFM, uses the identity function. In this case, the embedding of a
distribution is simply its mean.

Gaussian Mixture

We generate the data with the same Gaussian mixture as in Section 3.4.2. The parameters
are also the same : the radius is R = 2, the range of the eigenvalues is d = 1, the variance
of the Dirichlet distribution is τ = 50, the number of classes taken is c = 2 and c = 5 and
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the dimensions are D = 2, D = 5 and D = 10. The only difference from the experiments we
conducted in the previous chapter is that we do not contaminate the data with noise.

All the results are for the 6 different settings are mixed together in Table 4.2.

Flow Cytometry

We use the flow cytometry data from Metafora. This dataset is a subset of a larger dataset
that we present in detail in Chapter 5. For each patient we have access to four cell types: T
cells, B cells, NK cells and plasmocytes, but we discard the T cells because they are overrep-
resented in the dataset, see Figure 3.3. The results can be found in Table 4.3.

Quantifier Mahalanobis Classique
Optimal Σ

−1/2
α̃ Identity

BBSE 0.355 ; 2.5 0.355 ; 2.5 0.357 ; 1.0
RFFM 0.237 ; 1.5 0.237 ; 1.5 0.266 ; 3.0

FourierClassifier 0.323 ; 1.5 0.323 ; 1.5 0.348 ; 3.0
MeanDFM 0.696 ; 2.5 0.697 ; 2.5 0.625 ; 1.0

Table 4.2: GaussianMixture: Comparison of BBSE, RFFM, FourierClas-
sifier and MeanDFM. The value before the semicolon is the geometric mean of
the absolute error (multiplied by 100 for clarity) over 50 repetitions. Value after
the semicolon is the median rank of a method relative to the other method in the
same setting (same embedding but different matrices M). A bold value in a group
is not significantly different from the best-performing method in the group (also
in bold), as measured by a paired Wilcoxon test at p < 0.01.

The use of the covariance, either by taking the optimal M or the covariance directly,
significantly enhance the results for RFFM and FourierClassifier. For BBSE and MeanDFM,
the results are either improved of remain the same depending on the data. Note that in
Table 4.2, for BBSE the results are statistically better (according to the Wilcoxon test with
p-value less than 0.01) when we use the covariance, the geometric means are also smaller, but
the median rank of the classical method is better than the median rank of the other methods.
This could imply that the classical method is more consistent across different conditions,
whereas the various covariance-based methods might be more effective on average but less
robust in certain cases.

Robustness to open set label shift

Even if it is not the subject of this chapter, we point out that the results on robustness under
open set label shift presented in the previous chapter (see Theorem 3.3 and corollary 3.2), are



4.5. EXPERIMENTS 131

Quantifier Mahalanobis Vanilla
Optimal Σ

−1/2
α̃ Identity

BBSE 0.166 ; 2.0 0.166 ; 2.5 0.165 ; 1.5
RFFM 0.151 ; 1.5 0.151 ; 1.5 0.205 ; 3.0

FourierClassifier 0.138 ; 1.5 0.138 ; 1.5 0.156 ; 3.0
MeanDFM 0.329 ; 1.5 0.329 ; 1.75 0.364 ; 3.0

Table 4.3: Flow Cytometry: Comparison of BBSE, RFFM, FourierClas-
sifier and MeanDFM. The value before the semicolon is the geometric mean of
the absolute error (multiplied by 100 for clarity) over 50 repetitions. Value after
the semicolon is the median rank of a method relative to the other method in the
same setting (same embedding but different matrices M). A bold value in a group
is not significantly different from the best-performing method in the group (also
in bold), as measured by a paired Wilcoxon test at p < 0.01.

still true for the embeddings
(
MΦ(P̂i)

)c
i=1

but with different constants, in the same fashion
as in Section 4.3.1.

We said that robustness to contamination is ensured as long as the target embedding is
orthogonal to the source embeddings. For M -DFM, the conclusion is the same, except that
the target must be orthogonal w.r.t. the metric M .

In Table 4.4 we show the results of the same experiment as in the previous chapter for
the far setting, i.e. the noise is far from the source distributions. In Table 4.5 we show the
results for the flow cytometry dataset, where the T cells are used as a contamination.

As we can see, MahalanobisRFFM is robust to contamination, but the results are slightly
worse than RFFM for the real data and equivalent for the synthetic data.



132 Covariance-aware Distribution Feature Matching

Percentage of
noise ϵ

Quantifier Number of classes = 5
dim = 2 dim = 5 dim = 10

0.0 BBSE 1.45 ; 4.0 0.45 ; 3.0 0.37 ; 3.0
0.0 RFFM 0.65 ; 2.0 0.30 ; 2.0 0.32 ; 2.0
0.0 FourierClassifier 1.28 ; 4.0 0.45 ; 4.0 0.37 ; 4.0
0.0 MahalanobisRFFM 0.58 ; 2.0 0.26 ; 1.0 0.27 ; 1.0
0.0 MahalanobisFourierClassifier 1.17 ; 3.0 0.43 ; 3.0 0.36 ; 3.0
0.2 BBSE 9.90 ; 5.0 5.93 ; 5.0 5.36 ; 5.0
0.2 RFFM 1.17 ; 1.0 0.69 ; 1.0 0.70 ; 1.0
0.2 FourierClassifier 5.82 ; 4.0 5.32 ; 4.0 5.07 ; 4.0
0.2 MahalanobisRFFM 1.21 ; 2.0 0.71 ; 2.0 0.77 ; 2.0
0.2 MahalanobisFourierClassifier 5.83 ; 3.0 4.98 ; 3.0 4.82 ; 3.0
0.5 BBSE 17.42 ; 5.0 14.77 ; 5.0 13.53 ; 5.0
0.5 RFFM 2.19 ; 1.0 1.66 ; 1.5 1.81 ; 1.0
0.5 FourierClassifier 11.24 ; 4.0 13.24 ; 4.0 12.76 ; 4.0
0.5 MahalanobisRFFM 2.38 ; 2.0 1.67 ; 1.5 1.85 ; 2.0
0.5 MahalanobisFourierClassifier 10.87 ; 3.0 11.76 ; 3.0 11.45 ; 3.0
0.7 BBSE 19.78 ; 5.0 18.41 ; 5.0 17.93 ; 5.0
0.7 RFFM 2.54 ; 1.0 2.13 ; 1.0 2.62 ; 1.0
0.7 FourierClassifier 13.29 ; 4.0 16.90 ; 4.0 17.13 ; 4.0
0.7 MahalanobisRFFM 2.60 ; 2.0 2.25 ; 2.0 2.66 ; 2.0
0.7 MahalanobisFourierClassifier 12.95 ; 3.0 15.42 ; 3.0 15.48 ; 3.0

Table 4.4: Gaussian Mixture: Comparison of BBSE, RFFM, FourierClas-
sifier with and without mahalanobis when ρ = 10 (far setting). The value
before the semicolon is the geometric mean of the absolute error (multiplied by
100 for clarity) over 50 repetitions. Value after the semicolon is the median rank
of a method relative to the other method in the same setting (same dimension,
number of classes and percentage of noise). A bold value in a group is not signif-
icantly different from the best-performing method in the group (also in bold), as
measured by a paired Wilcoxon test at p < 0.01.
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Percentage of
noise ϵ

Quantifier Amount of shift
ρ = 10 ρ = 500

0.0 BBSE 0.17 ; 3.0 0.17 ; 3.0
0.0 RFFM 0.25 ; 5.0 0.23 ; 5.0
0.0 MahalanobisRFFM 0.16 ; 3.0 0.16 ; 3.0
0.0 FourierClassifier 0.16 ; 3.0 0.16 ; 3.0
0.0 MahalanobisFourierClassifier 0.14 ; 2.0 0.14 ; 2.0
0.1 BBSE 3.57 ; 5.0 3.57 ; 5.0
0.1 RFFM 1.55 ; 1.0 1.54 ; 1.0
0.1 MahalanobisRFFM 1.61 ; 2.0 1.61 ; 2.0
0.1 FourierClassifier 3.16 ; 3.0 3.16 ; 3.0
0.1 MahalanobisFourierClassifier 3.24 ; 4.0 3.25 ; 4.0
0.2 BBSE 7.08 ; 5.0 7.08 ; 5.0
0.2 RFFM 2.97 ; 1.0 2.97 ; 1.0
0.2 MahalanobisRFFM 3.15 ; 2.0 3.14 ; 2.0
0.2 FourierClassifier 6.25 ; 3.0 6.25 ; 3.0
0.2 MahalanobisFourierClassifier 6.42 ; 4.0 6.42 ; 4.0
0.3 BBSE 10.59 ; 5.0 10.60 ; 5.0
0.3 RFFM 4.40 ; 1.0 4.42 ; 1.0
0.3 MahalanobisRFFM 4.68 ; 2.0 4.68 ; 2.0
0.3 FourierClassifier 9.34 ; 3.0 9.35 ; 3.0
0.3 MahalanobisFourierClassifier 9.58 ; 4.0 9.59 ; 4.0

Table 4.5: Flow Cytometry: Comparison of BBSE, RFFM and Fourier-
Classifer with and without mahalanobis. The value before the semicolon is
the geometric mean of the absolute error (multiplied by 100 for clarity) over 50
repetitions. Value after the semicolon is the median rank of a method relative
to the other method in the same setting (same dimension, number of classes and
percentage of noise). A bold value in a group is not significantly different from
the best-performing method in the group (also in bold), as measured by a paired
Wilcoxon test at p < 0.01.
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4.5.2 Criterion and effective dimension
We proposed a controlled experiments where the embedding Φ is the identity matrix and the
source distribution is a mixture of 5 Gaussians in dimension D. Therefore, we directly have
access to the true covariance matrix Σα̃.

We suppose that the Gaussian have an effective dimension, i.e. only a subspace of dimen-
sion Deff < D contains variance information. To simulate this, we generate D eigenvectors,
then for the first Deff eigenvectors by sampling at random D vectors and applying a QR
decomposition, a corresponding eigenvalue is sampled uniformly on [1, 2]. For each of the
remaining D − Deff eigenvectors, an eigenvalue is sampled from a uniform distribution on
[0, 0.01] (we do not set these eigenvalues directly to 0 because we need the covariance matrix
to be invertible). We do this for each class independently, but the eigenvectors associated
with each eigenvalue are kept for each class, so the effective dimension of Σα̃ is Deff.

Figure 4.3 shows the eigenvalues of each class.

Figure 4.3: Sorted eigenvalues of each class. Here D = 100 and Deff = 10.

In Figure 4.4, we plot the value of Criterion (4.6) against the effective dimension Deff, for
the different choices of M we used in the experiments: the identity matrix, the covariance
and the optimal M. In Figure 4.5, we plot the estimation error (using the L2 distance) against
the effective dimension Deff for each M . For each effective dimension, the experiments are
repeated 20 times.

As we can see, when the effective dimension is small, the criterion for the optimal M and
for the pooled covariance matrix are almost equal. But what we can also see, is that even
in cases where the criterion for the pooled covariance matrix is clearly suboptimal the results
are the same. More work must be carried out to understand why the two choices yield similar
results. This experiment hints that the criterion we derive from the analysis is not correlated
with the quality of the quantifier.
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Figure 4.4: Value of criterion (4.6) for different effective dimensions Deff, depending
on the choice of matrix M .

Figure 4.5: L2 distance between the estimation α̂ and the true proportions α∗ for
different choice of M .
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4.6 Proofs

4.6.1 Proof of Theorem 4.1.

Proof. Using Definition 4.3 of ∆min :

√
∆min(Ĝ) =

√
∆min(V̂ ⊤V̂ )

= min
∥u∥2=1

1Tu=0

√
u⊤V̂ ⊤V̂ u

= min
∥u∥2=1

1Tu=0

∥∥∥V̂ u
∥∥∥

Let us note u∗ a minimiser.

Using the properties of the operator norm ∥·∥op we get for all operator M :

√
∆min(ĜM ) =

√
∆min(V̂ ⊤M⊤MV̂ )

= min
∥u∥2=1

1Tu=0

√
u⊤V̂ ⊤M⊤MV̂ u

= min
∥u∥2=1

1Tu=0

∥∥∥MV̂ u
∥∥∥

≤
∥∥∥MV̂ u∗

∥∥∥
≤ ∥M∥op

∥∥∥V̂ u∗
∥∥∥

= ∥M∥op
√
∆min(Ĝ)

Using this inequality we can conclude that for all M :

∥M∥op√
∆min(ĜM )

≥ 1√
∆min(Ĝ)

.

□
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4.6.2 Proof of Theorem 4.2.

Proof. Throughout the proof, we will use the notation α for α̃ to simplify the reading.
It holds :

DM
Φ

(
c∑

i=1

α̂iP̂i,

c∑
i=1

αiP̂i

)2

=

∥∥∥∥∥M
(

c∑
i=1

α̂iΦ(P̂i)−
c∑

i=1

αiΦ(P̂i)

)∥∥∥∥∥
2

=

∥∥∥∥∥
c∑

i=1

(α̂i − αi)MΦ(P̂i)

∥∥∥∥∥
2

= (α̂− α) ĜM (α̂− α)

≥

 min
∥u∥2=1

1Tu=0

uT ĜMu

 ∥α̂− α∥2

= ∆min(Ĝ
M ) ∥α̂− α∥2,

Thus in order to bound ∥α̂−α∥ we have to upper-bound: DM
Φ (
∑c

i=1 α̂iP̂i,
∑c

i=1 αiP̂i).
By the triangle inequality, this is upper bounded by DM

Φ (
∑c

i=1 α̂iP̂i, Q̂)+DM
Φ (Q̂,

∑c
i=1 αiP̂i).

By definition, α̂ is the minimiser of DM
Φ (
∑c

i=1 γiP̂i, Q̂) for γ ∈ ∆c, hence we have
DM

Φ (
∑c

i=1 α̂iP̂i, Q̂) ≤ DM
Φ (
∑c

i=1 αiP̂i, Q̂). Hence, we can upper bound the quantity by
2DM

Φ (
∑c

i=1 αiP̂i, Q̂).
Using the triangle inequality once again, we can upper bound DM

Φ (
∑c

i=1 αiP̂i, Q̂) by

DM
Φ

(
c∑

i=1

αiP̂i,
c∑

i=1

αiPi

)
+DM

Φ

(
c∑

i=1

αiPi, Q̂

)
. (4.12)

Using Theorem A.3 (Bernstein) and the union bound, it holds with probability greater
than 1− δ/2:

DM
Φ

(
c∑

i=1

αiP̂i,

c∑
i=1

αiPi

)
≤

c∑
i=1

αiD
M
Φ (Pi, P̂i)

≤
c∑

i=1

αi

σ1(M)
2

3

C log 4c/δ

ni
+

√
2 log 4c/δ

ni
Tr(MΣiM⊤)


≤ 2

3
log 4c/δσ1(M)C

c∑
i=1

αi

ni
+
√
2 log 4c/δ

c∑
i=1

αi√
ni

√
Tr(MΣiM⊤),

Since ni = nβ̃i, it holds
∑c

i=1
αi
ni

= 1
n

∑c
i=1

αi

β̃i
= ∥w∥1

n with w = α
β̃
.
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By Hölder’s inequality:

c∑
i=1

αi√
β̃i

√
Tr(MΣiM⊤) =

c∑
i=1

√
αi

β̃i

√
αiTr(MΣiM⊤)

≤
√

∥w∥1

√√√√ c∑
i=1

αiTr(MΣiM⊤)

≤
√
∥w∥1

√
Tr(MΣαM⊤),

so that :

DM
Φ

(
c∑

i=1

αiP̂i,
c∑

i=1

αiPi

)
≤ 2

3
log 4c/δσ1(M)C

∥w∥1
n

+
√
2 log 4c/δ

√
Tr(MΣαM⊤)

√
∥w∥1
n

.

We finally turn to bounding the term DM
Φ

(∑c
i=1 αiPi, Q̂

)
. It holds αi = mi/m where

mi is the number of target sample points of class i. We then get:

DM
Φ

(
c∑

i=1

αiQi, Q̂

)
=

∥∥∥∥∥∥M
 1

m

c∑
i=1

miΦ(Qi)−
1

m

n+m∑
j=n+1

Φ(xj)

∥∥∥∥∥∥
=

∥∥∥∥∥∥M
 1

m

n+m∑
j=n+1

Φ(Qyj )−
1

m

n+m∑
j=n+1

Φ(xj)

∥∥∥∥∥∥
=

∥∥∥∥∥∥M
 1

m

n+m∑
j=n+1

(
Φ(Qyj )− Φ(xj)

)∥∥∥∥∥∥
Now, notice that conditionally to the labels (yj)n+m

j=n+1, the target sample points xj are
independent, not identically distributed but with respective class conditional distribution
Qyj . We can therefore still appeal to Theorem A.3, and conclude that it holds with
probability greater than 1− δ/2:

DM
Φ

(
c∑

i=1

αiQi, Q̂

)
≤ σ1(M)

2

3

C

m
log 4/δ +

√
2 log 4/δ

m
Tr(MΣM⊤)

≤ σ1(M)
2

3

C

m
log 4c/δ +

√
2 log 4c/δ

m
Tr(MΣM⊤)

Where Σ := 1
m

∑n+m
j=n+1ΣΦ(Xj) =

∑c
i=1 αiΣΦ(Qi) = Σα.
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We conclude with a final union bound to bound the two terms of Equation (4.12).
DM

Φ (
∑c

i=1 α̂iP̂i,
∑c

i=1 αiP̂i) was bounded by 2 times (4.12), which explain the constant
R1 and R2 in Theorem 4.2. □

4.6.3 Proof of Theorem 4.3.

Let us first prove a lemma that we will use during the proof.

Lemma 4.1. Let D = Diag(d1, · · · , dc) ∈ Rc×c be a diagonal matrix with positive values.
For any matrix N ∈ Rc×(D−c), the matrix

A(N) :=

[
D N
NT 0

]
,

is positive if and only if N = 0.

Proof. If N = 0 the matrix A(0) is positive because for all x ̸= 0 ∈ RD, xTA(0)x =∑c
i=1 dix

2
i ≥ 0. If N ̸= 0, if we write x = (x1, x2) ∈ RD with x1 ∈ Rc and x2 ∈ R(D−c),

then
xTA(N)x = x⊤1 Dx1 + 2x⊤1 Nx2.

So if we take any vector x2 such that ∥Nx2∥ > 0 (such vector exists because N is not
null) and x1 = −Nx2 × ε for ε > 0. We have:

xTA(N)x = ε2
∥∥∥√DNx2

∥∥∥2 − 2ε∥Nx2∥,

so for ε small enough xTA(N)x < 0. □

Let us now prove Theorem 4.3.

Proof. Let us introduce some notations.
Throughout the proof we will note Σ = Σα̃. We note W = Σ−1/2V̂ ∈ RD×c and

A = Σ1/2M⊤MΣ1/2 ∈ RD×D.
With these notations,

Tr(MΣM⊤) = Tr(Σ1/2M⊤MΣ1/2) = Tr(A),

and
λmin(V̂

⊤M⊤MV̂ ) = λmin(V̂
⊤Σ−1/2AΣ−1/2V̂ ) = λmin(W

⊤AW ).

Let us write W := PDQ the SVD decomposition of W , with P ∈ O(D), Q ∈ O(c) and
D ∈ RD×c a rectangular diagonal matrix with positive real numbers on the diagonal, i.e.
D = [D0, 0]

T , with D0 = Diag(σ1, · · · , σc) ∈ Rc×c. If we write A′ = P⊤AP , we then have
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: λmin(W
⊤AW ) = λmin(Q

TD⊤P⊤APDQ) = λmin(D
⊤A′D) and Tr(A) = Tr(P⊤AP ) =

Tr(A′). With all these notations, the criterion (4.6) can be rewritten:

Tr(A′)

λmin(D⊤A′D)
. (4.13)

If we write A′ =

[
A′

0 A′
1

A′
2 A′

3

]
, with A′

0 ∈ Rc×c, A′
1 ∈ Rc×(D−c), A′

2 ∈ R(D−c)×c, A′
3 ∈

R(D−c)×(D−c) and A′
1 = (A′

2)
⊤ because A is symmetric.

Then, D⊤A′D = D0A
′
0D0 and Tr(A′) = Tr(A′

0) + Tr(A′
3). So to minimize (4.13) we

have to set the diagonal of A′
3 to zero and since A′

3 is symmetric and positive semidefinite
(as a sub-matrix of A′ which is itself symmetric and positive semidefinite) it implies that
A′

3 = 0, while A′
1 does not appear in the criterion and therefore can be chosen freely.

Let us write A′′
0 = D0A

′
0D0, so that λmin(D

⊤A′D) = λmin(A
′′
0) and Tr(A′) =

Tr(D−1
0 A′′

0D
−1
0 ) = Tr(A′′

0D
−2
0 ).

Since A is symmetric A′, A′
0 and finally A′′

0 are also symmetric. Using the spectral
theorem, there exist scalars a′′1 ≥ · · · ≥ a′′c ≥ 0 and (ui)

c
i=1 an orthonormal base of Rc

such that A′′
0 =

∑c
i=1 a

′′
i uiu

⊤
i . Finally, if a′′c > 0, (4.13) can be rewritten :

Tr(A′′
0D

−2
0 )

λmin(A′′
0)

=
1

a′′c

c∑
i=1

σ−2
i a′′i .

The minimum of this last equation is obtained by taking a′′1 = · · · = a′′i , i.e. by taking
A′′

0 = a× Ic, for a > 0. To fix the ideas, let us write a = 1 for the rest of the proof. The
minimum is then equals to Tr(D−2

0 ).
If A′′

0 = Ic then A′
0 = D−1

0 A′′
0D

−1
0 = D−2

0 and so

A = PA′P⊤ = P

[
D−2

0 A′
1

(A′
1)

⊤ 0

]
P⊤.

But W = PDQ so that

WW⊤ = PD⊤DP⊤ = P

[
D2

0 0
0 0

]
P⊤.

Hence, A = (WW⊤)+ + P

[
0 A′

1

(A′
1)

⊤ 0

]
P⊤, and since M⊤M = Σ−1/2AΣ−1/2 then

M⊤M = Σ−1/2
(
WW⊤

)+
Σ−1/2 +Σ−1/2P

[
0 A′

1

(A′
1)

⊤ 0

]
P⊤Σ−1/2. (4.14)

The minimum was equal to Tr(D−2
0 ) which is equal to Tr((Σ−1/2V̂ V̂ ⊤Σ−1/2)+).

In this proof, we minimised over B := M⊤M but in the formulation of the problem
we minimise over M . For Equation (4.14) to be valid, we need B to be positive.
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We have :

P⊤Σ1/2BΣ1/2P =

[
D−2

0 A′
1

(A′
1)

⊤ 0

]
.

According to Lemma 4.1,
[
D−2

0 A′
1

(A′
1)

⊤ 0

]
is positive if and only if A′

1 = 0. □





Chapter 5

A case study on Multiple Myeloma

In this chapter we explore the use of Random Fourier Features [98] in METAflow.
METAflow is the software developed at Metafora to perform automatic clustering of flow

cytometry datasets. The software uses an algorithm based on a density estimator to obtain
a hierarchical clustering, i.e. a tree where the nodes are clusters. This algorithm makes it
possible to obtain clusters faster than the manual gating method and more “natural” in terms
of density, while leaving the user in control of the exploration of the tree. In this exploratory
chapter, we investigate how the RFF embedding, introduced in Section 1.2.4, can be used to
analyse flow cytometry in a practical example. The RFF embeddings are a characterisation
of the node distributions, which we can compute quickly at each node by averaging the leaf
embeddings.

After a presentation of the clinical context of this chapter, we show how the embed-
dings can be use as a complementary tool for exploratory analysis. Then, we propose to
investigate distribution feature matching (DFM), introduced in Chapter 3, in this practical
setting. The goal is to estimate the proportions of different reference types of cells, in our
case different types of white blood cells, for each node in the METAflow tree. Furthermore,
we investigate the use of the embeddings to automatically label the nodes of the tree, i.e. for
each type of cell of interest, find the node of the tree that is most likely to be that type of cell.
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5.1 Introduction
Multiple myeloma (MM) is a haematological malignancy (i.e. a blood cancer) that affects
plasma cells, a type of white blood cell that produces antibodies (see Figure 5.1). In mul-
tiple myeloma, abnormal plasma cells grow out of control in the bone marrow. This leads
to weakened bones, anaemia, kidney damage and a weakened immune system. Common
symptoms include bone pain, fatigue, frequent infections and unexplained weight loss. Mul-
tiple myeloma is considered a relatively rare cancer, but it is the second most common blood
cancer. Approximately 100,000 people worldwide die from multiple myeloma each year.

This pathology develops from an asymptomatic stage of plasma cell proliferation called
monoclonal gammopathy of undetermined significance (MGUS). MGUS is the most common
plasma cell disorder [110] and is characterised by the presence of an abnormal protein in the
blood like MM but MGUS does not cause any symptoms and is usually found incidentally
during routine blood tests. MGUS is present in more than 3% of people aged 50 and over,
and about 1% progress to multiple myeloma each year. Therefore, most people with MGUS
never develop complications and do not require treatment, but it is important to monitor
people with MGUS regularly as it can progress to multiple myeloma.

We refer the reader to Kyle et al. [74] for a historical perspective on multiple myeloma
and to Cowan et al. [24] for a clinical presentation.
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Figure 5.1: Diagram of plasma cell development from the Canadian Cancer Society
[110].

Common questions asked by patients and clinicians are “What is the risk of progression
from MGUS to MM” and “Is there anything that can or should be done to delay or pre-
vent progression?”. Currently, clinicians lack reliable biological predictors of progression from
MGUS to MM. In the absence of such markers, MGUS patients are currently risk stratified
on the basis of a few selected clinical variables identified in epidemiological studies. Better
markers are needed to define high-risk (versus low-risk) MGUS and to better predict individual
risk of MM progression.

This is the aim of the “Multiple Myeloma” project at Metafora : investigate the use
of RBDs (Definition 5.1) as immunophenotypic markers to differentiate the plasma cells of
MGUS and MM. For the remainder of this chapter, we will refer to the plasma cells as
plasmocytes.

Definition 5.1 (RBD). The Receptor-Binding Domain (RBD) is a component found on
the surface of certain viruses, notably coronaviruses like SARS-CoV-2 (COVID-19). It is
a specific region of the virus’s spike protein, which protrudes from the viral envelope and
facilitates the virus’s entry into host cells. The RBD is responsible for binding to specific
receptor molecules on the surface of host cells, initiating the process of viral infection.

Actually, all the lymphocytes and not just the plasmocytes are of interest in this study,
see Figure 5.1. The four types of lymphocytes we will consider are the T cells, the B cells,
the NK cells (for “Natural Killer”), and the plasmocytes.
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5.1.1 Multiple Myeloma datasets

We have access to a cohort of 29 patients enumerated from 11 to 49 (we excluded some of
the patients because we lacked the labels).

For each patient we have access to a bone marrow sample analysed by flow cytometry,
(we have described the operation of a flow cytometer in Section 1.2.2). Therefore, for
each patient we have access to a sample in Rd, where each point corresponds to a cell and
each coordinate corresponds to a given marker. The ensemble of markers is called a panel
(Definition 5.2).

Definition 5.2 (Panel). In flow cytometry, a "panel" refers to a specific combination
of fluorescently labelled antibodies that we call markers that are used to identify and
characterise different cell populations within a sample. Each antibody in the panel is
labelled with a unique fluorochrome that emits light at a specific wavelength when excited
by a laser in the flow cytometer. By analysing the pattern of fluorescence emitted by
cells passing through the flow cytometer, researchers can determine the presence and
abundance of specific cell types based on the markers targeted by the antibodies in the
panel.

In addition to fluorescently labelled antibodies, flow cytometry also outputs the side
scatter (SSC) and forward scatter (FSC), which provide information about cell size and
granularity, contributing to the comprehensive characterization of cell populations within
the sample.

The design of a panel therefore involves the selection of the antibodies and the flu-
orochromes (colours) used for labelling. In particular, the cytometrist must minimise
spectral overlap to allow accurate and simultaneous detection of multiple markers in the
same sample.

The one used for this analysis is shown in Table 5.1. The morphological markers and
the CD markers are used to identify the main lymphocyte subsets and once it is done, the
cytometrist can look at the RBD markers.

Patients The number of events per patient ranges from two hundred thousand to sixteen
million, as shown in Figure 5.2. Only a small proportion of these events are lymphocytes.
Bone marrow also contains other types of white blood cells (granulocytes and monocytes),
red blood cells and platelets. The samples also contain doublets (two cells that pass in front
of the laser at the same time), dead cells or cell fragments. Figure 5.3 shows the development
of blood cells.

Among the patients, some are healthy and part of the control group, some have MGUS,
the asymptomatic first stage of MM, some have smoldering multiple myeloma (SMM), an in-
termediate stage between MGUS and MM that is also asymptomatic, and some have multiple
myeloma. See Table 5.2.
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Figure 5.2: Number of cells in each patient. The smallest sample has 217, 099
events while the largest has 16, 878, 172. The lymphocytes represent only a (small)
subset of the sample as we will see in Figure 5.5.

Figure 5.3: Blood cell development diagram from the Canadian Cancer Society
[110].
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Fluorochrome Marker
Morphological

FSC Forward scatter area
SSC Side scatter area

RBDs
A color A RBD

Cluster of differentiation
PerCP-Cy5.5 CD19
PE-Cy7 CD38
APC-H7 CD44
V500 CD45
V450 CD138
BV786 CD56

Table 5.1: The panel used in our datasets is a combination of the morphological
markers (FSC and SSC), which give information about the size and granularity of
the cells, the RBDs studied (we have not detailed them as they are confidential)
and the CD markers, which are cell surface molecules.
Note that in this table, we only show the markers that are common to all patients.

Diagnostic Patients
Control 32
MGUS 13, 16, 27, 28, 33, 35, 43
SMM 11, 24, 46
MM 12, 14, 15, 17, 18, 23, 25, 29, 30, 31, 37, 38, 39, 42, 44, 45

Table 5.2: Breakdown of patients by diagnosis.

Framework The data were analysed using two different frameworks. On the one hand,
a classical manual gating strategy was performed on the data (see Figure 1.2 for an example
of a manual gating strategy) using the software FlowJo. With this manual gating, we obtain
for each patient a set of four manually selected clusters, one for each cell type while the
remaining cells are unlabelled. We will refer to these clusters as the gates.

On the other hand, a second analysis was performed using METAflow, the software
developed at Metafora and presented in the introduction of this manuscript. The software
performs a hierarchical clustering on the data using a density estimator based on the algorithm
of Chazal et al. [20]. For each patient, the output is a binary tree that can be visualised as a
dendrogram, where each node represents a cluster and at a given depth we obtain a clustering
of the data. In this analysis, all the points belong to several clusters, but we do not have
access to the labels, so we do not know which cluster of the tree corresponds to which gate.
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In particular, note that the gates are never perfectly recovered by METAflow. We come
back to this in Section 5.2.2.

Gating strategy In Figure 5.4 we show the number of T cells, B cells, NK cells and
plasmocytes for each patient. These FlowJo gates were the one we used in Sections 3.4.2
and 4.5.1 to test DFM and M -DFM procedures.

However, because the colour used conflicted with one of the RBDs, the CD3 marker is
missing from the panel. CD3 is the marker normally used to identify T cells. As the marker is
missing from this panel, the cytometrists had to find another gating strategy to select them.
They chose to define the T cells negatively, i.e. the T cells are defined as lymphocytes that
are neither B cells, NK cells nor plasmocytes.

Labels Unlike classical machine learning problems where we assume that we have access
to a true label for each point (at least for the training set), here we do not have access to it.
Throughout this section we will assume that the true labels are given by the FlowJo gates,
but this is a choice and not a truth because the gates are the result of a human process
with biases and errors. On the one hand, the gates are drawn by software using square and
hard thresholds, which creates “unnatural” gates (in the sense of gates that do not respect
the density of the distribution), as shown in Figure 5.12 and on the other hand, the gating
strategy and the panel have to be chosen.

For example, since the CD3 marker is missing from the panel, the T cells are defined
negatively. This is a choice of gating strategy that is not absolute and another cytometrist
could choose differently (in fact, as this approach proved unsuccessful, as we shall see, a new
gating strategy was proposed to select the T cells, but we will not present this new data in
this section).

What’s more, even if the gating strategy is perfect and the panel is perfectly selected,
flow cytometry can not tell us the true genotypic nature of the cells, only the phenotypic
information (i.e. the set of observable characteristics or traits of the cells).

5.2 Embedding with Random Fourier Features
We compute the Random Fourier Feature (RFF) embedding of each FlowJo gate and each
METAflow cluster. The Random Fourier Features embedding used during the experiments
was presented in Section 3.4.1.

5.2.1 FlowJo

Let us start by looking at the FlowJo gates. In Figure 5.4 we show the number of cells in
each gate and for each patient and in Figure 5.5 we show the proportions of each cell type in
the samples. As we can see, the number of T cells far exceeds the number of other cells. For
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example, in patient 45 the T cells make up more than 80% of the sample. The other cells
represent less than 1% of the total data set, except for patient 39 which represents ∼ 5%.
The overrepresentation of Plasmocytes for this patient was already noted by the cytometrists
during their analyses and was not considered suspicious. We can therefore assume that this
gate represents the patient’s plasma cells.

It is highly unlikely that the T cells represent this amount in the sample, and it is suspected
that the gating strategy of negatively defining the T cells is responsible for this overrepresen-
tation. What we can do is look at the RFF embedding of the T cells to see if we can detect
this anomaly with this tool.

RFF on FlowJo To compute the vectorisation of the gates we have to select a band-
width.

In Chapter 3 we presented a criterion for choosing it: ∆min. This value represents how
far each population is from a mixture of the other populations.

In Figure 5.6 we plot the value of ∆min against the bandwidth σ when the sources are
the FlowJo gates. More specifically, for a given cell type, the source is the concatenation of
all FlowJo gates from all patients.

Since the number of events per patient is highly unbalanced, as shown in Figures 5.4 and
5.5, this concatenation tends to over-represent large gates at the expense of small ones. This
is particularly the case for T cells. Therefore, in the figure, we also show in light grey the
value of ∆min against the bandwidth σ for the FlowJo gates of each individual patient. As
we can see, the optimal bandwidth for the concatenations is σ = 0.32, while the optimal
bandwidth for each individual patient is closer to σ = 0.25. For the rest of this chapter we
will use σ = 0.25.

Note that the value of the criterion is around 0.2 and 0.5, which is high. This means that
the embedding was able to separate the different populations well. However, it is important
to remember that in this plot we are only considering 4 cell types. We do not know how the
other populations in the samples behave for this bandwidth.
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Figure 5.4: Number of cells in each FlowJo gate for each patient. Patients are
sorted according to the number of cells of interest.

Figure 5.5: Proportion of cells in the samples for each patient.
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Figure 5.6: Value of the ∆min criterion for different values of σ. In blue, the sources
are a concatenation of all FlowJo gates. Each grey line corresponds to one patient.
The grey dashed vertical lines are the argmax of each grey line and the blue dashed
vertical line is the argmax of the blue line.

In Figure 5.7 we show for each type of cell the distance matrix between the embedding
of each patient’s gate, it highlights several characteristics of the data.

Firstly, looking at the B cells and NK cells, we can clearly see that there are two groups
of patients: patients 11 to 35 and patients 37 to 46. According to the table 5.2, the patients
in the second group all have multiple myeloma except patient 46 who has SMM, but some
patients in the first group also have multiple myeloma, so the diagnosis is not the reason for
this discrepancy.

To understand what is happening in the figure, we need to look directly at the FlowJo
gates. In Figure 5.8 we show the histograms of each marginal of the B cells and the NK
cells. As shown in Figure 5.12, once the lymphocytes have been identified the markers used to
identify the B cells and the NK cells are the markers CD19 and CD56. We do not see much
difference between the two groups on these coordinates, which explains why the cytometrist
did not see the change in distribution during the analysis. Two markers can be highlighted
to explain this change: CD138 and CD44. After verification, it appears that the “APC-H7”
fluorochrome associated with CD44 was associated with a new marker after patient 37.

Therefore, for the rest of this section, we will remove this marker and use only the other
five. In Figure 5.9 we show the distance matrix again, but this time for the new data.

A clustering can still be read from the matrices, especially for the NK cells, but the two
previous groups have disappeared. A more detailed analysis could be carried out to understand
the exact nature of these clusters, but this is beyond the scope of our work. In fact, if we
only wanted to differentiate between B cells and NK cells with a group as homogeneous as
possible, we would use only the two markers: CD19 and CD56 as in Figure 5.12. The problem
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Figure 5.7: Pairwise distance of patients’ FlowJo gates for each cell type.

is that with only these two markers we can not differentiate between the lymphocytes and the
other cells. Our analysis (as well as METAflows) is multidimensional. The other dimensions
explain the in-group variability of each cell type.

What is really important to us is firstly that the different FlowJo groups are as separated
as possible, we will see that this is indeed the case, and secondly that the cells of interest are
separated from the other cells.

In Figure 5.10 we show a two-dimensional representation of the gates using t-SNE [124].
It is important to note that this representation is “cherry-picked ” because t-SNE depends
heavily on one parameter: the perplexity. A different value would give a different result. In
the figure we use perplexity = 6.

This plot shows that the RFF embedding allows us to distinguish between the different
cells. We can also see that one plasmocytes gate looks more like a B cells than a plasmocytes,
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Figure 5.8: Histogram of each marginal for the B cells and NK cells.
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Figure 5.9: Pairwise distance of patients’ FlowJo gates for each cell type, excluding
the APC-H7 fluorochrome. The bandwidth used is σ = 0.25.

after verification this abnormal gate belongs to patient 26.
The reason for this is that the plasmocytes were not found in the sample 26, probably

because the marker used to differentiate between plasmocytes and B cells can disappear over
time if the sample is not analysed early enough. For this patient, the expert chose a different
gating strategy to find them. Using the RFF, we can see that the corresponding gate looks
more like a B cells than a plasmocytes, so this new gating strategy was not successful.

5.2.2 METAflow
METAflow performs a hierarchical clustering on the data using a density estimator. The
estimator uses all available markers, including the RBDs or the CD44 marker that we have
removed when calculating the RFF, as well as other markers that we have not included in
Table 5.1 because they are not common to all patients.
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Figure 5.10: Two-dimensional representation of the RFF embeddings of the FlowJo
gates using t-SNE [124].

The output of the algorithm is a tree, where each node represent a cluster.
If we have access to the FlowJo gates, we can use the F1 score to find the nodes that

best match the gates.

Definition 5.3 (F1 score). The F1 score between two sets is a measure of similarity. It
is defined as twice the harmonic mean between precision and recall.

In Figure 5.11 we show the value of the best F1 score for each patient and each cell type.
An arbitrary threshold of 0.6 is used at Metafora to distinguish between clusters that were
recovered and clusters that were not. As we can see, METAflow is on average able to recover
the FlowJo gates. However, the gates are rarely recovered perfectly. In fact this is desirable
as we show in Figure 5.12. The FlowJo gates are the result of a manual procedure and are
often obtained by “cutting” at a given threshold in a certain direction. Therefore they do not
respect the density of the underlying distribution. In a way, the best METAflow gates are
smoothed versions of the FlowJo gates.

Without delving into the clustering, we can not be sure that METAflow has not found
clusters that are more likely to be the cell of interest than the FlowJo gates, as we do not
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have access to the true labels. Therefore, the F1 score must be seen as a measure of the
agreement between the manual and automatic gates, not as a measure of the quality of the
clustering, and since we do not have access to the true labels, we can not compute such a
measure.

Figure 5.11: This heatmap shows the best F1 score of the tree for each cell type
and patient. Patients are sorted by their mean F1 score. The mean F1 score for
each cell type is shown on the right of the heatmap. The value of the F1 score is
in red if it is below the (arbitrary) threshold of 0.6.

Figure 5.12: Scatter plot of the B cells and NK cells of patient 16 according to
FlowJo for two markers used in the gating strategy to gate the cells: CD19 and
CD56. The dashed black lines have been added by us to illustrate that the FlowJo
gates are the result of manual selection. This highlights two problems with this
gating method. Firstly, the two gates are arbitrary in the sense that if the same
cytometrist were to redo the gating, the threshold used (here in black) would not
be exactly the same. Secondly, the resulting gates are not natural in terms of the
density of the distribution. It is therefore not surprising that METAflow can not
recover the exact gates.
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RFF on METAflow As we explained in the introduction (Section 1.2.3), the advantage
of a mean embedding approach is its linearity with respect to the distributions. To compute
the Random Fourier Features embedding of a node, we need to compute a weighted average
of the embeddings of its children. As a result, the time required to compute the embedding
of each node is approximately the same as the time required to compute the embedding of
each point in the data set.

Note that this is not necessarily fast, as the number of points is massive : from two
hundred thousand to sixteen million, see Figure 5.2.

For each node of a tree, we compute the RFF embedding (with σ = 0.25) of the cluster
using only the 5 markers presented in Table 5.1 (minus CD44 as explained), the seed is fixed
so that the embedding of the FlowJo gates can be compared with the embedding of the
nodes.

5.3 Labelling the nodes
In this section we want to use RFF to automatically label 4 nodes of the tree with our labels:
B cells, T cells, Plasmocytes and NK. We will consider two scenarios.

In the first, we assume that the specialists perform the gating using FlowJo, but want to
have access to clusters that are more “natural” than those obtained with the first analysis.
Therefore, the experts perform a second analysis, this time using METAflow. In this case, the
objective is to select the node in the tree that “corresponds” to the FlowJo gate. Previously,
we did this using the F1 score because it balanced precision and recall, i.e. the cluster takes
as many points as possible from the gate while controlling the number of false positives. Here
we explore the use of RFF to select the best cluster.

In the second scenario, we assume that the FlowJo gates are not available. In this case,
the specialists use METAflow directly on the data. Again, the goal is to select the clusters
that correspond to the cell of interest. This is not an unsupervised problem because we
assume that we have access to a reference sample.

5.3.1 When we have access to the FlowJo gates.

For each patient and cell type we calculate the RFF of the FlowJo gate, the selected cluster
is the closest cluster in terms of RFF distance. In Figure 5.13 we show the F1 score of the
selected cluster compared to the best possible F1 score. Since we are using the F1 score
as a measure of quality and no longer as a measure of concordance, as we did for example
in Figure 5.11, we will necessarily get clusters with worse or equal F1 scores as if we had
taken the best F1 score. Once again, we are faced with the difficulty of not having access to
the true label of the data, since without going into the clusters we can not be sure that the
selected clusters are not better than those with the best F1 scores.

In this setting, RFF is a good tool for cluster selection, except for T cells. In particular,
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Figure 5.13: For each cell type, we plot the F1 score of the selected cluster against
the best F1 score. The size of the points is proportional to the precision of the
selected cluster. If the method selects a different cluster than the method that
directly uses the F1 score, we print the precision of the cluster next to the point.
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Figure 5.14: For each cell type, we plot the F1 score of the selected cluster against
the best F1 score. The size of the points is proportional to the precision of the
selected cluster. If the method selects a different cluster than the method that
directly uses the F1 score, we print the precision of the cluster next to the point.
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plasma cells, although heterogeneous as seen in Figure 5.9, are well found. We also note the
presence of clusters with poor F1 scores but high precision (and therefore poor recall), that
are small subset of the best cluster.

Since in this setting we have access to the F1 score of the clusters, a hybrid approach
could be used where we select the clusters using the RFF, but ensuring that the F1 score or
precision (depending on the criterion we set ourselves) is not too low, in order to eliminate
the few very poor matches we find.

5.3.2 When we do not have access to the FlowJo gates

If we do not have access to the FlowJo gates, we have to use other sources. We assume that
the specialist has already gated all but one patient, and we use this information to match
the cluster in the tree. Note that this is different from calculating the RFF embedding of
the concatenations as we did to select the bandwidth in Figure 5.6. By averaging the RFF
embedding directly, we ensure that the small gates are not dominated by the large gates.

In Figure 5.14, we show the F1 score of the selected cluster compared to the best possible
F1 score.

In this other setting, the results are way more mitigated. Once again, we note that many
of the clusters found, particularly for plasma cells, have a low F1 score but a high precision.

5.4 Quantification
In this last section we want to estimate the proportions of the 4 classes in each node of the
tree. The goal is to help the specialist explore the tree by pointing out the “directions” in
the tree in which the proportions are higher. Once we have computed the RFF embedding of
each node of the tree (the targets, to use the terminology used throughout the manuscript),
we can quickly solve a QP problem for each node.

As in the previous section, we need to choose our sources. For the same reasons, we
consider two choices: when we have the 4 FlowJo gates of the patients and when we have
the FlowJo gates of all others patients.

The sources are calculated exactly as in the previous section.
In Figure 5.15 we show the estimated proportion of each selected cluster (selected using

the F1 score), against the true proportions when we have access to the FlowJo gates of the
patient, while in Figure 5.16 we show the same, but when we use the mean embedding of the
other patients as source. In Table 5.3 we show the errors measure using the absolute distance
between the estimation and the true proportions.

The error is lower when considering all clusters rather than only the clusters selected by
the F1 score. This is because many clusters are far from the cells of interest, indicating the
robustness of the method. As a result, numerous clusters have their proportions estimated
at zero. As shown in Table 5.3, using the FlowJo gates from the same patient or from other
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patients only marginally changes the results, with a slight advantage for the same patient’s
FlowJo gates.

When only the best clusters are considered, the error is significantly higher. As seen in
Figure 5.15, the estimations almost always overestimate the true proportions. Although it is
slightly better when using FlowJo gates from other patients, the results remain poor.

Cells All cluster Best cluster
Same patients Different patients Same patients Different patients

B cells 0.267 ± 0.234 0.3 ± 0.231 0.407 ± 0.224 0.389 ± 0.231
Plasmocytes 0.033 ± 0.09 0.05 ± 0.099 0.33 ± 0.157 0.229 ± 0.204

NK 0.056 ± 0.123 0.078 ± 0.145 0.239 ± 0.151 0.183 ± 0.187
T cells 0.503 ± 0.292 0.623 ± 0.33 0.268 ± 0.294 0.096 ± 0.357

Table 5.3: For each cell type, the table shows the mean error and standard devia-
tion, categorized by whether the data source is from the same patients or different
patients. The “All cluster” columns represent the error for all clusters, while the
“Best cluster” columns show the error for the cluster selected using the F1 score.



5.4. QUANTIFICATION 163

Figure 5.15: Proportions estimated against the true proportions of each selected
clusters.
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Figure 5.16: Proportions estimated against the true proportions of each selected
clusters.



5.5. CONCLUSION 165

5.5 Conclusion
RFF embeddings can be used as a complementary tool for flow cytometry analysis. They are
fast to compute and adapt well to the number of points and tree structure of METAflow. In
the use case presented in this chapter, we successfully used the embeddings to detect a prob-
lem in the marker used that might have gone unnoticed because the problem was on markers
that are not used to differentiate the different lymphocytes. The RFF can also be used to
check that a gating strategy has been successful. In this example, we were able to see that
one of the patient’s plasma cells had not been successfully gated. It would be interesting to
look at the selected (using the RFF) plasmocyte gates from this patient to see which cluster
was selected.

For the problem of labelling the nodes, the results are complex to analyse because the
F1 score is used both as a way to select the cluster and as a way to evaluate the quality
of a selection. Therefore, the clusters selected using the RFF can only be worse than those
selected using the F1 score. To correctly measure the quality of the selected clusters, we
would have to look at them manually. Nevertheless, it is hard to imagine that those with 0%

accuracy are great clusters, so in the case where we have the FlowJo gates, a hybrid approach
might be more reasonable.

For quantification, however, the results are poor, even when we use the FlowJo gates as
sources. Two reasons explain these results. In Corollary 3.2, we highlight the robustness of
DFM with RFF embedding to contaminations that are far from the source distributions, and
as we saw in Figures 5.6, 5.10 or in the experiments we performed with these data in Chapter 3
and 4, the different lymphocyte populations are well separated. However, this is not the case
for all other non-lymphocyte cells in the sample. Moreover, the non-lymphocytes cells of a
cluster tend to be close to the lymphocytes because they are part of the same cluster. This
explains why the estimated proportions are completely overestimated.

Furthermore, as we can see in Figure 5.9, the references for a given cell type are hetero-
geneous. This means that the open set label shift hypothesis is not verified, i.e. Pi ̸= Qi.
In Theorem 3.3 we show that this was not a problem under an orthogonal condition of the
embeddings, which is not verified here.

In flow cytometry, and in molecular biology in general, this inter-sample variability is called
the batch effect. Due to the experimental nature of the experiments, many non-biological
factors, such as laboratory conditions, changes in the instruments used to perform the ex-
periment, or even the exposure of the sample to light, can cause a shift in the distribution.
There exists pre-processing steps to mitigate this phenomenon, such as CytoNorm [125], but
we have not used them here.





Conclusion and perspectives

In this thesis we have worked on a problem of proportion estimation called “ label shift
quantification”, as well as on an extension called open set label shift quantification.
Introduced as a problem in its own right in a series of articles by Forman [46, 47, 48], label
shift quantification has since gained increasing attention in the machine learning community,
but remains somewhat confidential.

In the first chapter of this thesis, we presented an overview of the methods introduced
by the quantification community, as well as some methods introduced by researchers outside
the community. We also discussed the evaluation protocols and, importantly for the rest of
the thesis, the works that have been proposed to unify the different methods of the literature
under the same framework.

In this spirit, we proposed our own framework: Distribution Feature Matching of DFM,
a method based on mean vectorisation (in RD or, more generally, in any Hilbert space) that
includes several methods from the literature, and we proposed a theoretical analysis of the
convergence of the framework. To the best of our knowledge, this is the first time that a
unifying framework has been proposed to obtain a convergence theorem that applies to all
methods. Moreover, the bound we obtained was tighter than those found in the literature.
We also investigated the convergence property of DFM under open set label shift and showed
robustness to noise for the Gaussian kernel when the noise distribution is far from the source.

In the next chapter, we presented a covariance-aware extension called M-DFM, where we
take into account the covariance information of the embeddings and not only the means as in
DFM. Using a vectorial Bernstein inequality, we showed that M -DFM gives better guarantees.

Chapter 3 was published in Machine Learning and Knowledge Discovery in Databases: Re-
search Track. ECML PKDD 2023. Lecture Notes in Computer Science, vol 14173. Springer,
2023 [30], and a patent has been filed by Metafora, University Paris-Saclay and the CNRS,
based on the article, on a “method for determining proportions of populations in an ensemble
of biological objects” using the Random Fourier Features vectorisation.

In the final chapter, we explore the use of this vectorisation in flow cytometry applications,
specifically on three tasks: analysis of manual gates, labelling of nodes, and quantification.
The first was successful, we believe that the characterisations obtained through this vectori-
sation can be used to compare the gates, to assert that the gating strategy was successful and
to find irregularities in the dataset, such as mislabelling. The results of the second applica-
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tion are more complex to analyse because we do not have access to the true labels and more
research needs to be done. Unfortunately, the quantification fails because the assumptions
we make about the distribution are not verified.

Several potential avenues for future research and development based on the findings and
insights presented in this thesis are outlined below.

Minimax rate We did not address the question of the lower bounds in any chapter, and
in particular one can wonder if the DFM procedures are minimax.

This question was not addressed by the authors of the methods presented in the first
chapter. However, as we have already pointed out, the literature on quantification is more
applied than theoretical. Most of the methods we discuss do not have convergence theorem, so
the minimax question does not arise. The methods for which we have theoretical guarantees,
such as BBSE by Lipton et al. [77] or MLLS by Garg et al. [52], did not propose minimax
rates either.

We found one article in the quantification literature that tackles this problem by Vaz et
al. [126]. The main contribution of their paper is to propose the first lower bound on the risk
of label shift quantification.

Without going into the details of the assumptions, they showed that no estimator could
have a faster convergence rate than max

(
n−1/2,m−1/2

)
, which is the rate we obtained for

the DFM procedures. A more in-depth review of this paper should be considered to confidently
assert that DFM procedures are indeed minimax optimal.

Since label shift quantification is a parametric estimation, it was expected to obtain a
parametric rate of convergence. An extension of the work of Vaz et al. [126] would be to
consider optimality in terms of the parameters of the problem, in particular the number of
classes and on the “ammount of shift” w.

Hypothesis testing In the introduction, we stated that three problems could be ad-
dressed: detect if a label shift happened in the target, correct a procedure developed on the
source, and quantify the shift. In this manuscript, we focused on the last problem, but we
could explore how to adapt our DFM procedures to perform hypothesis testing.

The problem amounts to test whether the target sample Q̂ and the (possibly reweighed)
source sample

∑c
i=1 β̂iP̂i have the same distribution.

Lipton and his co-authors, in the article where they “introduce” BBSE (although BBSE
already existed under the name adjusted classify and count in the quantification literature),
proposed Black-Box Shift Detection (BBSD) to detect label shift by running a simple two-
sample test (a Kolmogorov-Smirnov test) on the outputs of the classifier. We can extend
their approach by using any embedding. For instance, with the kernel mean embedding, we
would obtain the maximum mean discrepancy, and if we also use a Mahalanobis distance, we
would obtain the maximum kernel Fisher discriminant analysis, two statistics for which we
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have a rich and detailed literature.
Closely related settings have been studied in the literature. For instance, the setting

where we want to test whether a given class is present in the target, i.e. αi > 0 for a given
i, has been studied by Gaucher et al. [53] in the binary case under the name supervised
contamination detection. Their test, called the Estimated Density Ratio Test, was shown to
be empirically better (in terms of power) than the MMD approach. Their work is of particular
interest to us as they have tested their methods on Flow Cytometry datasets.

Another setting studied in the literature, that can be linked to the open set label shift
setting, is the novelty detection literature, see Pimentel et al. [91]. However, the settings
studied assume that the marginal proportions of the different classes in the target are the
same as in the source.1 A natural extension for our setting would be to perform a test when
the marginal proportions change.

In depth numerical study In our experiments, we tested only 5 DFM procedures:
BBSE, RFFM, EnergyQuantifier, FourierClassifier, and MeanDFM. Additionally, we included
the results of a Classify and Count procedure as a baseline. More embeddings could be
explored, such as histograms or the intermediate layers of neural networks. Comparing these
results with the numerous methods presented in Section 2.2, especially MLLS, often regarded
as the state-of-the-art, could provide further insights.

Better bounds for M-DFM In Theorem 4.2, we presented a convergence bound for
M -DFM, which we used to derive a criterion for choosing the optimal M . We discussed
the nature of this optimal M in detail in Section 4.4, highlighting the differences between
it and the pooled covariance matrix Σα̃. However, the theorem is only true for M that are
independent of the data, while the optimal M depends on both the pooled covariance matrix
and the empirical source embeddings V̂ . We can deal with the first dependency by splitting
the data as explained, but we can not do so for the dependency on V̂ . This remains a gap
which should be bridged in future developments.

One way to navigate around this issue would be to modify the proofs, so that the Gram
matrix that appears in the criterion depends on the source embeddings rather than the em-
pirical ones, i.e. we replace the dependence in V̂ by a dependence in V directly.
Alternatively, we could show that the optimal M is directly the pooled covariance matrix.
Indeed, the experiments in that chapter showed no difference between the two choices of M ,
even in cases where the pooled covariance matrix is clearly suboptimal according to the cri-
terion. We think that an alternative proof of Theorem 4.2 might yield a different bound with
a criterion that depends not on the variances of Φ(P̂i) but on the variances of ΠV

(
Φ(P̂i)

)
.

In other words, only the variances in the subspace generated by the source embeddings would
matter for the choice of M . We believe that the optimal M for this new criterion would be
the pooled covariance matrix, thus explaining the empirical results.

1With the notations we used throughout this manuscript: ∀i ∈ [1, . . . , c] : βi = αi/(
∑c

i=1 αi).
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A final issue to be addressed is the error when Σα̃ is also estimated with practical regu-
larisation.

Shift in Flow Cytometry As we pointed out in the experiments in Chapter 5, the label
shift hypothesis is not verified in flow cytometry. As pointed out by Tachet et al. [114], the
label shift assumption is too strong: “label shift clearly fails in most practical applications”.
For this matter, they introduced generalised label shift a more general assumption, where
they assume that there exists a function g : X 7→ Z such that for all classes i : P(g(x)|y =

i) = Q(g(x)|y = i). In other words, the label shift assumption is verified for at least one
embedding function. The authors proposed to train a neural network where the first layers
correspond to the embedding g, while simultaneously learning the proportions α. In flow
cytometry, an ante-hoc approach such as CytoNorm [125] can be used to mitigate the batch
effect, this procedure could mimic the function g of the generalised label shit assumption. A
direct extension of our experiments would be to use such approaches before computing the
vectorisations.

We could also investigate the modelisation of the shift with other assumptions than label
shift, in particular covariate shift, a shift characterised by P(y|x) = Q(y|x). This setting is
adapted to flow cytometry because the gates are typically (but not always) obtained on one
patient once and then apply to all the other patients. See Tasche [118, 119] for some results
on quantification under covariate shift.



APPENDIX





Appendix A

Concentration inequality in Hilbert
spaces

This appendix is devoted to the presentation of vector norm concentration inequalities in
Hilbert spaces used throughout this thesis. The three theorems presented are a Hoeffding
based inequality which is agnostic to the variances of the random variables, a Bernstein based
inequality and finally a Bennett based inequality which is worse than the Bernstein one, but we
present it for completeness. In particular this encompasses concentration inequalities of the
approximation of the Kernel Mean Embedding (introduced in Section 1.2.3) of a distribution
P with the Kernel Mean Embedding of an empirical distribution P̂ := 1

n

∑n
k=1 k(Xi, ·), where

X1, · · · , Xn is an iid sample of P. However, the inequalities we seek are more general than
this case. One of the main contributions of Chapter 3 is to propose a general framework
for quantification that involves embedding the data points X1, · · · , Xn in a Hilbert space H,
which includes but is not limited to Kernel Mean Embedding. Furthermore, it is assumed
that the tuple points/labels: (Xi, Yi) are independent and identically distributed, but condi-
tionally on the labels the points are independent but not iid because each point Xi comes
from the distribution PYi . This distinction has its importance in the proofs, and so we look
for theorems that assume independence but not equidistribution (i.e. not iid).

Throughout this appendix, we will refer to Z1, . . . , Zn as n independent but not necessarily
identically distributed random variables taking values in a Hilbert space H. In our case,
Zi = ϕ(Xi) where ϕ is an arbitrary mapping from X to H. We assume that the random
variables Zi are bounded by a constant C. For instance, if ϕ is the implicit mapping of a
kernel k, then C = supx∈X

√
k(x, x) and if the kernel k is translation invariant on Rd, i.e.

k(x, y) = κ(x− y) for some function κ, then C = κ(0).
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With these assumptions in mind, we want to find a real B := Bδ,C(Z1, . . . , Zn) such that,
with probability greater than 1− δ:∥∥∥∥∥ 1n

n∑
i=1

(Zi − E[Zi])

∥∥∥∥∥ ≤ Bδ,C(Z1, . . . , Zn),

and we want both the asymptotic speed and the constants to be as small as possible.

A.1 Hoeffding-based inequality
The first methods used in the kernel literature to bound

∥∥µP − µP̂
∥∥
H used vectorial variants

of Hoeffding’s inequality. These results have appeared in various versions in the literature
(one of the earliest versions seems to be by Pinelis [92]) and are based on McDiarmid’s
inequality [80] which controls the difference between a function and its expectation as long
as the function satisfies the bounded differences property.

In the kernel literature, authors did not apply McDiarmid’s inequality directly, but first
expressed the dual formulation of the norm

∥∥µP − µP̂
∥∥, which is the sup-norm of an empirical

process :

∥∥µP − µP̂
∥∥ = sup

∥f∥H≤1

〈
f, µP − µP̂

〉
= sup

∥f∥H≤1

(
EP[f(X)]− 1

n

n∑
i=1

f(xi)

)
,

and applied McDiarmid here. To upper bound the expected value of this sup-norm, they
used a symmetrization step and bounded it by twice the Rademacher complexity of the class
{f ∈ H, ∥f∥ ≤ 1} and then bounded the Rademacher complexity of this class using a result
of Barlett et al. [6].

This kind of approach was proposed by Song [111] in his phd thesis (Theorem 27) and
he obtained the bound B = 2√

n
+
√

log(2/δ)/2n. Note that in his proof he assumed that
C = 1 which is a standard assumption for kernels. Using, the same technique Lopez et

al. [78] obtained a better bound with B = C
(2+

√
2 log(1/δ))√

n
(see Theorem 1). To the best of

our knowledge, this is the best bond achieved using the dual formulation of the norm. For
completeness, note that Briot et al. [10] also used this technique to obtain a bound of the

form B = C
(
√
2+
√

2 log(1/δ))√
n

(see Lemma 1).
Another approach is to apply McDiarmid directly to the norm without using the dual

formulation. For KME, this idea was used by Tolstikhin et al. [122] to obtain a bound of the

form B = C
(1+

√
2 log(1/δ))√

n
. In their paper they assumed Zi to be iid in a Hilbert space of

real-valued functions but their results can be generalized to independent but not iid variables
in any Hilbert space.
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In the article derived from Chapter 3 of this phd (see the ArXiv version with the proofs [29]),
we used the same argument but we obtained the same constant as in Lopez et al. [78]. We
propose here a slightly improved proof that leads to better constants.

Theorem A.1. Let Z1, . . . , Zn be independent (not necessarily identically distributed)
random variables taking values in a Hilbert space H. Suppose that ∀i ∈ [n] : ∥Zi∥ ≤ C < ∞.
Then with probability greater than 1− δ :∥∥∥∥∥ 1n

n∑
i=1

(Zi − E[Zi])

∥∥∥∥∥ ≤ C
(1 +

√
2 log(1/δ))√
n

,

Proof. Since ∥Zi∥ ≤ C, the random variables Zi take values in BC := {z ∈ H : ∥z∥ ≤ C}.
Define the function F : (BC)

n → R as

F (z1, . . . , zn) :=

∥∥∥∥∥ 1n
n∑

i=1

(zi − E[Zi])

∥∥∥∥∥ .
Straightforward computations show that the function F satisfies the bounded difference
condition. Namely, let us fix all the values z1, · · · , zn in BC except for the zj which will
be set to z̄j , we have

|F (z1, · · · , zn)− F (z1, · · · , z̄j , · · · zn)| =
1

n
∥zi − z̄i∥ ≤ 2C

n
.

Using McDiarmid’s inequality, since Zi are realisations of independent random variables
taking values in BC , it holds with probability greater than 1− δ:∥∥∥∥∥ 1n

n∑
i=1

(Zi − E[Zi])

∥∥∥∥∥ ≤ E

[∥∥∥∥∥ 1n
n∑

i=1

(Zi − E[Zi])

∥∥∥∥∥
]
+ C

√
2 log(1/δ)

n
.

Let us write Z̃i = Zi − E[Zi]. The random variables Z̃i are independent, bounded in
norm and centered.

By Jensen’s inequality,

E
[∥∥∥∥ 1n∑ Z̃i

∥∥∥∥] ≤
√√√√E

[∥∥∥∥ 1n∑ Z̃i

∥∥∥∥2
]

=
1

n

 n∑
i,j=1

E[⟨Z̃i, Z̃j⟩]

 1
2

=
1

n

(
n∑

i=1

E[∥Z̃i∥2]

) 1
2

,
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where we have used that since for i ̸= j the variables Z̃i, Z̃j are independent and
centered it holds E

[
⟨Z̃i, Z̃j⟩

]
= 0. We could simply bound E

[
∥Zi − E[Zi]∥2

]
by 2C2 but

by using a simple argument found for instance in [22] or in [122], we can achieve a better
bound:

E
[∥∥Z̃i

∥∥2] = E
[
∥Zi − E[Zi]∥2

]
= E

[
∥Zi∥2

]
+ E

[
∥E[Zi]∥2

]
− 2E[⟨Zi,E[Zi]⟩]

= E
[
∥Zi∥2

]
− ∥E[Zi]∥2

≤ E
[
∥Zi∥2

]
≤ C2,

so that E
[∥∥∥ 1

n

∑
Z̃i

∥∥∥] ≤ C√
n
. □

A.2 Bernstein-based inequality
To take into account the covariance matrices of the random variables, Wolfer et al. [127]
used a concentration inequality based on a vectorial version of Bernstein. They assumed that
Zi were iid but their result can be extended to our setting and we propose here an alternative
version of their work with our assumptions.

Their result is based on a Bernstein inequality in Hilbert space due to Yurinsky [129]
(see Theorem 3.3.4). We propose here an alternative version where we use as a building
block a theorem due to Pinelis [93] (Theorem 3.3), which is tighter and more general because
it applies to martingales in Banach spaces that satisfy a smoothness condition. With this
change, the difference between our version and Wolfer’s one will be the constant before the
term in O (1/n), we will have 2/3 while they had 4/3.

First let us state the theorem of Pinelis.

Theorem A.2 ([93]). Let f = (f0, f1, · · · ) be a martingale in a (2, D)−smooth separable
Banach space. Let us note f∗ = sup ∥fj∥ and Ej−1 the conditional expectation given the
filtration Fj−1.

Suppose that ∥∥∥∥∥
∞∑
i=1

Ej−1∥fj − fj−1∥p
∥∥∥∥∥
∞

≤ p!

2D2
B2Hp−2

for some H > 0, B > 0 and for all p > 1. Then, for all r ≥ 0,

P(f∗ ≥ r) ≤ 2 exp

(
− r2

B2 +B
√
B2 + 2Hr

)
. (A.1)

Suppose we have n centered independent random variables (ξi)ni=1 in a Hilbert space H.
Following the theorem, we propose the next corollary.
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Corollary A.1. Let H be a Hilbert space, and let (ξi) be n independent random variables
(not necessarily identically distributed) with values in H. Suppose that

• E[ξi] = 0 for all i.

• There exists constants B > 0 and H > 0 such that for all p ≥ 2:

n∑
i=1

E[∥ξi∥p] ≤
p!

2
B2Hp−2.

Then, for any r > 0,

P

(
max
1≤s≤n

∥∥∥∥∥
s∑

i=1

ξi

∥∥∥∥∥ ≥ r

)
≤ 2 exp

(
− r2

2B2 + rH

)
. (A.2)

Proof. We apply Theorem A.2.
In this context, the Banach space is now the Hilbert space H, so that the smoothness
constant D is equal to 1. The martingale is defined by fj =

∑j
i=1 ξi so that fj−fj−1 = ξj

and f∗ = max1≤s≤n ∥
∑s

i=1 ξi∥.
Using Equation (A.1):

P

(
max
1≤s≤n

∥∥∥∥∥
s∑

i=1

ξi

∥∥∥∥∥ ≥ r

)
≤ 2 exp

(
− r2

B2 +B
√
B2 + 2Hr

)
,

we then use
√
1 + x ≤ 1 + 0.5x for x ≥ 0:

P

(
max
1≤s≤n

∥∥∥∥∥
s∑

i=1

ξi

∥∥∥∥∥ ≥ r

)
≤ 2 exp

(
− r2

2B2 + rH

)
.

□

Note that in Yurinsky [129] they had 2B2 + 2rH instead of 2B2 + rH.
We can now state our version of Bernstein’s inequality for vector-valued random variables.

Theorem A.3. Let Z1, . . . , Zn be independent (not necessarily identically distributed)
random variables taking values in a Hilbert space H. Suppose that ∀i ∈ [n] : ∥Zi∥ ≤ C < ∞.
Denote Σ := 1

n

∑
ΣZi , where ΣZi is the covariance matrix of Zi. Then with probability

greater than 1− δ :∥∥∥∥∥ 1n
n∑

i=1

(Zi − E[Zi])

∥∥∥∥∥ ≤ 2

3

C log(2/δ)

n
+

√
2 log(2/δ)

n
Tr(Σ). (A.3)
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Proof. We will apply Corollary A.1 to the random variables ξi = Zi − E[Zi] who satisfy
E[ξi] = 0. First note that, ∥ξi∥ ≤ 2C. For p = 2:

n∑
i=1

E[∥ξi∥2] =
n∑

i=1

Tr(Σzi) = nTr(Σ).

While for p ≥ 3:
n∑

i=1

E[∥ξi∥p] ≤ (2C)p−2
n∑

i=1

E[∥ξi∥2]

= nTr(Σ)(2C)p−2.

This last inequality has not yet the form p!
2 B

2Hp−2, a simple option would be to bound
it by p!

2 nTr(Σ)(2C)p−2 and in that case H would be equal to 2C and we would obtain
the same bound as in the Bennett-based inequality that we will present shortly after
(Theorem A.5). Wolfer et al. [127] proposed to lower the gap between nTr(Σ)(2C)p−2

and p!
2 nTr(Σ)(2C)p−2 as such:

n∑
i=1

E[∥ξi∥p] = nTr(Σ)(2C)p−2

†
≤ inf

a

p!

2
nTr(Σ)

(
2C

a

)p−2

=
p!

2
nTr(Σ)

(
2C

3

)p−2

,

where the inf in (†) is taken over all value a such that 1 ≤ p!
2ap−2 for all p ≥ 2. The

minimum is obtained for a = 3. Hence, we have B2 = nTr(Σ) and H = 2/3C. A direct
application of Corollary A.1 yield for any r > 0:

P

(
max
1≤s≤n

∥∥∥∥∥
s∑

i=1

ξi

∥∥∥∥∥ ≥ r

)
≤ 2 exp

(
− r2

2nTr(Σ) + 2/3rC)

)
.

Hence, with probability greater than 1− δ we have:

max
1≤s≤n

s

∥∥∥∥∥1s
s∑

i=1

(Zi − E[Zi])

∥∥∥∥∥ ≤ 2

3
C log(2/δ) +

√
2nTr(Σ) log(2/δ),

which yield Equation (A.3) for the special case s = n. □

A.3 Bennett-based inequality
Another approach taken by Smale et al. [108] to take into account the covariances of the
random variables, consists in using a vector-valued Bennett inequality instead of a Bernstein
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one. Their result is based on a concentration result by Pinelis [93] on the norm of vector-
valued martingales in certain “smooth” Banach spaces (Theorem 3.4). The resulting bound
has the same form as the Bernstein one (A.3) except for the constant before the term in
O (1/n). In Bernstein we had 4/3, while in Bennett we have 4. Note that the reference [93]
may not be the oldest one, as there exist previous works on the same subject by Penelis and
Sahanenko written in Russian.

Although the bound is not as good, we propose to demonstrate the result here for com-
pleteness. Again, their result assumes that the Zi are independent and identically distributed,
but can be easily extended to our setting.

First let us state the theorem of Pinelis.

Theorem A.4 ([93]). Let f = (f0, f1, · · · ) be a martingale in a (2, D)−smooth separable
Banach space. Let us note d∗ = supj ∥fj − fj−1∥, s22 =

∑∞
j=1 Ej−1[∥dj∥2 where Ej−1

stands for the conditional expectation given the filtration Fj−1 and f∗ = sup ∥fj∥.
Let us suppose that ∥d∗∥∞ ≤ a, ∥s2∥∞ ≤ b/D for some a, b > 0.

Then for all r ≥ 0,

P(f∗ ≥ r) ≤ 2 exp

(
r

a
−
(
r

a
+

b2

a2

)
log
(
1 +

ra

b2

))
.

In our context, the Banach space is a Hilbert space H so that the smoothness con-
stant D is equal to 1. The martingale is defined by fj =

∑j
i=1(Zi − E[Zi]) so that

d∗ = supj ∥Zj − E[Zj ]∥ ≤ 2C, and s22 =
∑j

i=1 E
[
∥Zi − E[Zi]∥2

]
= nTr(Σ).

The following theorem is a restatement of Smale’s results (Lemmas 1 and 2).

Theorem A.5 ([108]). Let Z1, . . . , Zn be independent (not necessarily identically dis-
tributed) random variables taking values in a Hilbert space H. Suppose that ∀i ∈ [n] :

∥Zi∥ ≤ C < ∞. Denote Σ := 1
n

∑
ΣZi , where ΣZi is the covariance matrix of Zi. Then,

P

{
sup

i=1,··· ,s

∥∥∥∥∥1s
s∑

i=1

(Zi − E[Zi])

∥∥∥∥∥ ≥ ε

}
≤ 2 exp

{
− nε

4C
log

(
1 +

2Cε

Tr(Σ)

)}
. (A.4)

In particular, for any 0 < δ < 1, with confidence 1− δ:∥∥∥∥∥ 1n
n∑

i=1

(Zi − E[Zi])

∥∥∥∥∥ ≤ 4
C log(2/δ)

n
+

√
2 log(2/δ)

n
Tr(Σ), (A.5)

The proof follows the approach of Smale et al. [108] in section 3. The first inequality
(A.4) is derived from Pinelis’ theorem and the second inequality (A.5) is simply a restatement
of the first.
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Proof. Let us apply Theorem A.4 with r = nε, a = 2C and b2 = nTr(Σ).
We have,

r

a
−
(
r

a
+

b2

a2

)
log
(
1 +

ra

b2

)
= − b2

a2

[
−ra

b2
+ (1 +

ra

b2
) log

(
1 +

ra

b2

)]
= − b2

a2
h
(ra
b2

)
≤ − r

2a
log
(
1 +

ra

b2

)
Where h(t) = (1 + t) log(1 + t)− t. In the last line, we use h(t) ≥ t

2 log(1 + t).
The rest of the proof is a direct application of Equation (A.4) and the inequality

∀x ≥ 0, log(1 + x) ≥ x

1 + x
.

Using both arguments we have:

P

{∥∥∥∥∥ 1n
n∑

i=1

(ξi − E[ξ])

∥∥∥∥∥ ≥ ε

}
≤ 2 exp

{
− nε

4C
log

(
1 +

2Cε

Tr(Σ)

)}

≤ 2 exp

{
− nε2

4Cε+ 2Tr(Σ)

}

For a fixed confidence value δ, we search for the ε such that −nε2 = log(δ/2)(4Cε+ 2Tr(Σ)).
Solving this quadratic equation yield:

ε ≥ 4
C log(2/δ)

n
+

√
2 log(2/δ)

n
Tr(Σ).

□
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